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ABSTRACT

A parametric time delay model to compare floating point unit implementations is proposed. This model is
used to compare a previously proposed floating point adder using a redundant number representation with
other high-performance implementations. The operand width, the fan-in of the logic gates and the radix of the
redundant format are used as parameters to the model. The comparison is done over a range of operand widths,
fan-in and radices to show the merits of each implementation.
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1. INTRODUCTION

Floating point units are used an important part of general purpose processors and can be even more important
in dedicated hardware for graphics and digital signal processors. There is a need to have a quick and easy way
to determine the most suitable design for a specific application before committing too much time to the details
of the design. This document presents a simple parametric model for the time delay of the hardware used in
floating point units.

The parameters of the model are the operand width, the logic gate fan-in and the radix of the redundancy
for designs using redundant representations. In special hardware for digital signal processing or graphics appli-
cations, the operand format does not have to conform to a standard and is usually dependent on the application
and on the other design restrictions. The significand may be 16 bits or less. Most general purpose processors
conform to the ANSI/IEEE standard.»2? This standard specifies certain formats with specific operand widths.
The hardware designer who already designed a floating point unit for one format of the standard or for a specific
application in graphics or signal processing may find that the design is not optimal for another format. The
proposed parametric model can be used to identify the best architectures based on the given constraints. The
range of desirable operand widths, (n), is quite large spanning from about n = 8 bits to about n = 256 bits
depending on the application. Architectures that are beneficial for small operand widths may not be for large
operand widths.

The logic gate fan-in (f) is the second parameter to consider. A large number of designs use standard
libraries with pre-designed components. The maximum fan-in of the standard gates is usually limited to a small
number. For CMOS technologies the fan-in limitation is due to the number of series transistors that may be
stacked in one pull-up or pull-down chain. Typical values for the maximum fan-in are between about f = 2 and
f = 6 inputs per gate.

The third parameter used in the model is the radix (2") of the digits. Signed digits or other forms of
redundancy may be used to improve the unit performance. In such designs, the operand width is divided into
digits with some redundancy. When redundancy is present in the format, there will be more than one way to
represent each number. The redundancy is introduced to eliminate the need for carry propagation.®> The radix
of the digits can be as small as 2 (binary) or as large as the operand width (non-redundant). Practical values
for the radix range from radix 2 to about 256 or digit width between 1 and 8 bits.

The various floating point adder designs that were selected for comparison are briefly described in section 2.
Section 3 introduces the model used and the simulations performed to validate the model. The results obtained
by applying the model to the different designs are presented in section 4 and finally conclusions are given in
section 5.



2. DESCRIPTION OF REPRESENTATIVE DESIGNS

A number of floating point adders that have been described in detail in the literature*=® are used for comparison.

They are all evaluated according to the delay model mentioned above. All of the designs selected use two-path
algorithms for high-performance execution. In all five examples, the far path takes longer than the close path.
The results reported in this paper assume the longer far path. Each adder is labeled by the name of the first
author on the publication describing the design.

The one by Nielsen is described in more details in two papers.®'® The critical path for this adder goes

through the exponent subtract (11 bit subtraction), the significand swap, and the alignment shifter (a full length
shifter for the 65 bit significand) in the first cycle. In the second cycle, the critical path includes two [4 : 2]
compressors and the adjustment logic. The third cycle requires the sticky digit calculation (implemented by a
tree of multiplexers and hence having [log, n] levels) and the rounding logic. The fourth cycle introduces the
delay of the final operand width (64 bits) carry propagate adder. This design has a long latency compared to
other designs but it provides an improved throughput due to the redundancy used.

The adder proposed by Oberman has the exponent difference (11 bit) and the swap in its critical path for
the first cycle. The second cycle includes the operand width shifter and the third cycle has the half adder, the
carry propagate adder (operand width), and a multiplexer.

The design proposed by Smith has the exponent difference (11 bit), the swap and the operand width
alignment shift in the first cycle. In the second cycle, the operand width carry propagate adder and some
multiplexers fall on the critical.

The critical path of the adder presented by Seidel has in the first cycle either the partial exponent adder
(7 bit), the bitwise XOR, the operand width shifter and a multiplexer or the full exponent adder, the bitwise
XOR, the OR tree then the select lines to the output delay of the multiplexer. In its second cycle, there is
the half adder, the compound adder (of full operand width), the one bit location shift, a multiplexer to select
between the two shifted results and a final multiplexer to choose between the far and close paths.

The adder previously proposed by the current authors has the exponent difference (5 bit) in its critical
path followed by the significand swap, the alignment shifter, the signed digit carry free adder, and the final
multiplexer.

3. THE TIME DELAY MODEL AND ITS VALIDATION

The model proposed here gives an estimate of the number of equivalent elementary delay units in the critical
path of the floating point hardware. The floating point unit delay is presented in “fanout of 4” delays, or the
delay of an inverter driving a load that is four times its own size. This is commonly abbreviated as FO4 for
the “fanout of 4” inverter.

The simulation tool irsim (a switch level simulator for transistors) is used to simulate a number of circuits
in order to validate the model. All the circuits are designed in a CMOS 0.6um technology. The first such circuit
is a chain of inverters properly scaled so that each one is four times the size of the preceding one. The chain is
used to estimate the time delay of an FO4 inverter. The pull down time of the inverter is 0.40ns while the pull
up time is 0.44ns. Hence, the average delay unit is estimated to be 0.42ns.

In this model, for any integer adder the following simplified formula giving the gate delay of conditional sum

addition!! is used: n

T=5+2X ﬂngq(fﬂ - 1)]

In the formula, n is the number of bits in the adder and f is the fan-in or the maximum number of inputs for
a gate in the design. [4 : 2] compressors are assumed to take 3 FO/ delays while a (3,2) counter takes 2 FO4
delays.!?

A single m-to-1 multiplexer is considered to take only one FO/ delay from its inputs to the output assuming
it is realized using CMOS pass gates. This assumption for the multiplexer is acceptable as long as m is not
very large so that the different CMOS pass gates are not capacitively loading each other heavily. Small m is



the usual case in VLSI design since multiplexers rarely exceed say a 5-to-1 multiplexer. Using irsim the 2-to-1,
3-to-1 and 4-to-1 multiplexers are simulated. They all exhibit a time delay from the inputs to the output within
the range of one FO4 delay (i.e. less than 0.42ns). When the input lines are held constant and the select lines
change, the delay from the select lines to the output is found to be larger than one FO4 delay but not more
than two FO/ delays. Hence, for a single multiplexer the delay from the select lines to the output is assumed
to be bound by 2 FO4 delays. A series of m to 1 multiplexers connected to form a larger n-bit multiplexer is
assumed to load its select lines heavily. Hence there is even a larger delay form the select lines to the output in
this case. To keep up a balanced design with a fanout of four rule, each four multiplexers should have a buffer
and form a group together. Four such groups need yet another buffer and form a super group and so on. The
delay of the selection then is assumed to be [log,(n)] + 1. This last formula is applicable even in the case of a
single multiplexer since it yields 2 as given above.

The carry free signed digit adder used in the design by Fahmy is a number of parallel adders each taking
digits composed of 7 +1 bits (radiz = 2") and adds them producing their sum, sum plus one and sum minus one.
Then a choice is made between those three outcomes and a possible correction made to compensate for carries
into the higher up digit. Because of the more complicated carries in this scheme it is assumed that they take
an additional FO/ delay. The choice of which outcome of the adder to produce is basically a multiplexer that
has a delay from its select line to its output and then there is an additional FO/4 delay for the last correction.
So, the total delay of the signed digit adder is (5 + 2 x [logf_l([r}'l] -]+ 1+ ([logy(r+1)]+1)+1 FO4
delays. This is a conservative estimate for the signed digit adder. Using over 100000 random test vectors, it is
found that such an adder using r = 4, f = 3 and composed of three digits has a delay of 4.0ns. This delay is

less than the 10 FO4 delays predicted by the above formula.

Shifters can either be done by a successive use of multiplexers or as a barrel shifter realized in CMOS pass
transistors. In either case, the delay of an n-way shifter from its inputs to its outputs is assumed to take
[log,(n)] FO4 delays. The select lines are heavily loaded as in the case of multiplexers. However, if the same
idea of grouping four basic cells is used then the delay from the select lines is the same as for the multiplexers.
This is smaller than the delay from the inputs to the outputs in the shifter. Hence the input to output delay
dominates and is the only one used. A 16-way shifter is designed using NMOS transistors and simulated with
irsim. The model predicts that its delay must be less than [log,(16)] = 4 FO4 delays. Using a set of random
inputs to stimulate the simulation, the time delay from the inputs to the outputs is found to be less than 1.2ns.
This delay is equivalent to 3 FO/ so the model is on the conservative side in this case.

For other pieces of combinational logic where a specific design is reported in the published papers, the delay
can be estimated. If the design is not known, and the logic has n inputs then its time delay is assumed to be
[logs(n)] FO4 delays.

The different parts of the model are summarized in Table 1. Using units of FO4 delays makes the model
independent of the technology scaling to a large degree since this elementary gate scales almost linearly with
the technology.'® Such units also make the model take into effect the time delay associated with the small
local wires inside the FO/ inverter as well as those connecting it to neighboring gates. However, the model does
not include any assumptions about long wires across the chip and the time delay associated with them. Hence,
obviously, it does not give an accurate estimate of the absolute delay of a logic unit. However, the model can
be used to compare different architectures to estimate their relative speeds. The reason that the model does
not differentiate between the delay time of the different types of gates is that the designers usually change the
sizes of the transistors in order to equalize the time taken by all gates on the critical path.

4. RESULTS

The time delay of the various designs discussed in the previous section can now be estimated. Since the
significand width and exponent width are closely related in the formats used for floating point units, it is
assumed here that the exponent width is eight bits for any significand width that is 24 bits or less. Otherwise,
the exponent width is assumed to be 11 bits. For the design of Fahmy this translates to 11 bits with the small
significand width and 15 bits otherwise. This difference in the exponent width leads to a sudden jump in the
time estimated for the delay at the point where the significand width is 24. The assumption of such a step



Part Delay

Adder 5+2x [log;_1([$1-1)]
[4 : 2] compressors 3
(3,2) counters 2

Multiplexer, input to output | 1
Multiplexer, select to output | [log,(n)] +1

Signed digit adder 8+2x [logf_l([%] —1)] + [logy(r +1)]
Shifter [log,(n)]
Other (no design details) [log;(n)]

Table 1. Time delay of various components in terms of number of FO/ delays. f is the maximum fan-in of a gate and
n is the number of inputs.

change is used instead of a complex relation between the exponent width and significand width in order to
simplify the derivation of the delay estimates. In the following discussion, the symbol expW is used for the
exponent width for the “traditional” designs and the symbol expW F' is used for the design by Fahmy. Another
simplification used is to ignore small increases in the operand width (for example by one bit due to recoding in
the design of Nielsen) along the critical path of the design.

For the design by Nielsen, the exponent subtract takes 5 + 2 x [logffl([@] —1)] FO4 delays. The
significand swapping is done with a multiplexer that has the select lines coming from the exponent difference.
So, [logs(n)]+1 FO4 delays is added for the swap. Next, the shifter takes [log,(n)] FO4 delays. The two [4 : 2]
compressors in the second cycle add 6 FO4 delays. The adjust logic is not described in enough detail to make
a good delay estimation. The adjust logic is based on the signs of the two numbers and the difference of the
exponents, hence we assumed it to take only 2 FO4 delays. The adjustment itself is a multiplexer whose select
lines come from the adjust logic and takes [log,(n)]+1 FO4 delays. The signed sticky computation of the third
cycle uses a tree of multiplexers? and hence takes [log,(n)] FO4 delays. The rounding logic is not specified
and it has 10 inputs along with the mode (four possible modes) and the sign of the result. The rounding logic
is then assumed to take [log,;(15)] FO4 delays. The final adder takes 5 + 2 x [logf_l([%] —1)] FO4 delays.
To sum all of this, the design by Nielsen has the following delay:

TNietsen = 20 + [log;(15)] + 2 x [logy (n)] + 2 x [logy(n)]

+ 2 x [logy_y (15 = 1)1 + 2 flogy 4 (171 - 1]

The design by Oberman includes the exponent subtract and the significand swap on the critical path, similar
to the case for the design of Nielsen. This takes 5 + 2 x [logffl([”?W] —1)] and [logs(n)] +1 FO4 delays
respectively. The shifter adds [log,(n)] FO4 delays. The half adder of the third cycle takes 2 FO/ delays.
Although not explicitly reported in the published paper, there must be a negation of the shifted operand in
the case of a subtraction operation. This negation is assumed to take one FO4 delay. The compound adder
is assumed to take one FO4 delay longer than a regular adder of the same width since it has an additional
multiplexer to choose between the sum and the sum plus one. So the compound adder is assumed to take
6+2 x [logy_;([%#]—1)] FO4 delays. The final multiplexer to choose between the far and close path adds one
more FO4 delay. So, the design proposed by Oberman has the following delay:

TOberman = 16+ [-10g4 (n)-l + |-10g2 (n)-|

expW n
+2x ﬂogf_l(fT1 —DI+2x |—1ng—1(|—?-| —-1)]
The critical path of the design by Seidel has two possibilities. The first is the 7 bit exponent difference

(not the full 11 bit), the bitwise XOR, the shifter and finally the multiplexer (from inputs to output). This
first option takes 5 + 2 X [logffl([%] —1)] 4+ 14 [logy(n)] +1 FO4 delays. The second possibility is the full



11 bit difference, the bitwise XOR, the OR tree, the delay from select lines to the output of the multiplexer.
This latter option takes 5 + 2 x [log;_,([%#] — 1)] + 1 + [log(5)] + [log,(n)] + 1 FO4 delays. The second
option is slightly longer and is the one use({ for the delay calculations if the exponent width is assumed to be
11 bits. Obviously, if the exponent width is only 8 bits then the first option (assuming that the whole exponent
difference is evaluated by one adder) is the one determining the critical path. The second cycle of this design
starts with the half adder and the compound adder which both add 8 +2 x [logs_;([%#] —1)] FO4 delays. The
one bit location shifters are multiplexers whose select line is one of the bits produced]c by the compound adder,
hence there is a delay of [log,(n)] + 1 FO4 delays. The multiplexer used to choose between the two shifter
outputs adds just one more FO/ delay (the delay of its select line is in parallel with the delay of the select line
of the previous shifters). Finally, there is a multiplexer to choose between the far and close path that adds one
more FO4 delay. To summarize, the design of Seidel has the following delay:

TSeidel,ecpw=11 = 18+ [log;(5)] + 2 x [log,(n)]
+2x nogf_l(f%w ~ 1)1+ 2 flog (1~ D]

18 + [log,(n)]
+2x rlogf,la% ~ 1)1+ 2 logy (131 - 1)1

TSeidel ,expW =8

Similar to the designs of Nielsen and Oberman, the design of Smith starts as well with the exponent difference
and the significand swap. This takes 5 + 2 x [log f_l([”?W] —1)] and [logy(n)] + 1 FO4 delays respectively.
The shifter adds [log,(n)] FO4 delays. The negation for the case of subtraction takes one FO4 delay. The
prefix adder produces several outputs that pass through logic to set some fields in the case of an exception (zero,
NaN, ...). This is assumed to add one FO/ delay to that of the adder giving 6 + 2 x [logf_l([?] - 1)] FO4
delays. Then, there is a multiplexing stage to choose between the possible outcomes and a final multiplexer to
choose between the far and near path. This is assumed to add two more FO4 delays. The total delay for the
design of Smith is thus:

rsmin = 154 [logy(n)] + [logs ()]
P ﬂogf_1<re""’pW1 ~ 1)1+ 2 x logy (171 = 1)

The design by Fahmy starts with the exponent difference. This is a 15 bit adder and not an 11 bit one
because of the special format used in this design. In fact, the exponent width in this format depends on the
radix (equal to 2") chosen for the digits and not just on n as in the previous designs. In the following derivation,
this dependence on r and n is ignored and expW F' is assumed to be 15 for n > 24 and 11 for smaller n. The
significand in this format is also larger than the corresponding significand for the previous designs because of
the redundancy. The significand width is [2] x (r + 1) — 1. The swapping multiplexers must be as wide as the
signficand and the output of the exponent difference is used to drive the select lines. Up to this point, the delay
is estimated to be 5 + 2 x [log;_ 1(|’e““’}’VF'| 1)] + [logy([%] x (r +1) = 1)] + 1 FO4 delays. The operand
then passes through a [2]-way shifter which adds [log,([%])] FO4 delays. The following multiplexer adds one
more FO4 delay. The s1gned digit adder takes 8 + 2 x ﬂogf 1(|’T+1] —1)] + [logs(r + 1)] FO4 delays. The
select lines of the last multiplexer partially depend on the output of the adder in order to determine if there is
a need to adjust to the right by one bit. Hence, there is a delay from the select lines to the output equal to
[log,([51 x (r+1) = 1)] + 1 FO4 delays. The total delay for this design is thus:

Tranmy = 16+ 2 [logy([=] x (r+1) = 1)] + [logy([1)]
expW F
i

+2x [logy 4 (%271 = 1] + 2 x [log4(I=1 = 1] + [loga(r + 1]
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Figure 1. Time delay versus significand width for different fan-in values.

Figure 1 shows the time delay of the different designs when the significand width varies from 8 to 120 bits
for different values of fan-in from f = 3 to f = 6. For the design by Fahmy, r is kept constant at r = 8. It
is clear that the redundancy in the design of Fahmy makes it the fastest design for smaller fan-in values and
large significand width. This is intuitively meaningful since for large significand widths the other designs suffer
from a long time delay due to the longer carry propagation in the adders. As the fan-in increases, the long
carry delays can be made better by using larger groups of bits in the conditional-sum or carry-lookahead adders.
Hence, the improvements in performance due to the redundancy become less important and the overhead due
to the larger significand size make the design with redundancy less desirable.

In the design proposed by Fahmy, considering the dependence of the exponent width on the radix and the
other blocks (specially the shifter), the practical values for r should be multiples of 2. In order to minimize
the additional cost of the redundancy (register storage, extra hardware,...) a large r is desirable. However,
increasing r reduces the redundancy available and increases the time delay.

In Fig. 2, a comparison is presented between having r = 4 and r = 8 with the fan-in being either 3 or 4.
Having a larger fan-in obviously improves the performance but it also decreases the relative advantage of this
design compared to the other conventional ones. To clarify this point further, Table 2 compares the design
proposed by Fahmy to that of Smith at n = 80 showing the relative improvement and the effect of r on the
improvement.
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Smith

f=3 f=4
4

r=8 | r=4 r=38§8

34

Fahmy

36 33 34

Relative improvement

5/40 = 125% 10% | 2.94% 0%

Table 2. Effect of r on the relative improvement for n = 80.

5. CONCLUSIONS

A parametric model for the time delay estimation of floating point units is presented. The time delay model
accuracy is validated using irsim. The model then is used to compare different floating point adder designs
for a large range of parameters. The time delay model can be used by designers and researchers to focus
their efforts in the most profitable direction. Other parametric models that estimate power consumption and
implementation area are also very important and should be considered for future extension to the current work.

For practical CMOS designs, the fan-in is usually limited to 3 or 4. The majority of the floating point
adders are currently designed to handle double precision numbers (n = 53) or larger. For this range, the design
proposed by Fahmy provides the best performance. The benefit of choosing a lower radix for the adder proposed

by Fahmy is also highlighted.
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