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Abstract

Arithmetic operations are among the most basic instructions in microprocessors, digital signal pro-

cessors and graphics accelerators. Addition is the most frequent arithmetic operation in numerically

intensive applications. Multiplication follows closely and then division and other elementary func-

tions. The speed of those arithmetic operations is also often directly linked to the overall perfor-

mance of the computers. The work presented in this thesis proposes several techniques to improve

the effectiveness of floating point arithmetic units.

A partially redundant number system is used as an internal format for floating point arithmetic

operations. The redundant number system is based on signed digits and enables carry free arithmetic

operations to improve the performance. Conversion from the proposed internal format back to the

standard IEEE format is done only when an operand is written to memory. A detailed discussion

of an adder and a multiplier using the proposed format is presented and the specific challenges of

the designs are explained. Beside the redundancy, the proposed units include further enhancements

that increase the floating point performance such as a hexadecimal based number format and a

postponed rounding technique.

A time delay model is developed and applied to analytically predict the performance of the

floating point units. The predicted delays are then compared to state-of-the-art designs. The

comparison is done over a range of operand widths, fan-in and radices to show the merits of each

implementation. The proposed system achieves better performance for double precision and larger

operand width. Transistor simulation of the complete adder and multiplier confirm the performance

advantage predicted by the analytical model. A brief description of a divider using the proposed

format is also presented.

The proposed internal format and arithmetic units comply with all the rounding modes of the

IEEE 754 floating point standard.
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Chapter 1

Introduction

1.1 Meaning of some crucial words

This thesis is titled “A Redundant Digit Floating Point System” and an explanation of this name

is needed to introduce the subject. From a linguistic point of view, the word redundant means

exceeding what is necessary or normal. By digit, we mean the numerals 0 to 9 in the conventional

decimal system or one of the elements that combine to form numbers in a system other than the

decimal system. The decimal system is also called base-10 system and its digits range from 0 to 9,

i.e. from 0 to 10 − 1. For the decimal system, 10 is called the radix and the digits usually go up to

the radix minus one. The same idea applies for other systems. For example, in a binary (base-2)

system the digits usually are 0 or 1, in a base-8 system the digits are usually 0 to 7. A number X

with n digits (xn−1, · · · , x0 in the radix β) can be written as xn−1 xn−2 xn−3 · · ·x1 x0. The x0 is

taken to represent the units or β0 values, the x1 represents the β1 values, the x2 represents the β2

values and so on. The total value of X is given by X =
∑i=n−1

i=0 xiβ
i. Such a system is called a

weighted positional number system since each position has a weight and the digits are multiplied by

that weight. This system was invented in India and developed by the Muslims who called it hisab

al-hind �� ����
� � ��	 
 ���� [3] or Indian reckoning in English.

That Indo-Arabic system (also known as the Muslim system) was later introduced to Europe

and replaced the Roman numerals. That is the reason why the numerals 0 to 9 are known in the

west as the Arabic numerals. A simple idea links the Roman system to the much older Egyptian

system: the units have a symbol used to count them and that symbol is repeated to count for more

than one. A group of five units has a different symbol. Ten units have another symbol, fifty units

have yet another symbol and so on. This Roman system only survives today for special applications

like numbering the chapters of a book but is not in much use in arithmetic. Another number system

that existed in history is the Babylonian system which was a sexadecimal system and it survives

today in the way we tell the time by dividing the hour into sixty minutes and the minute into sixty

1



CHAPTER 1. INTRODUCTION 2

seconds. In the work presented here, with the exception of a comparison in Chapter 2 with a system

based on the older Chinese number system, we will consider only the weighted positional system.

In the examples given above for the weighted positional system, we assumed that the number

of numerals or symbols used is exactly equal to the radix of the system and that no redundancy

is available. One form of redundancy is to introduce more numerals so that the total number of

numerals exceeds the radix. As such, multiple representations of a given value become possible.

This is the type of redundancy used throughout this thesis unless otherwise noted. Other types of

redundancy might include the use of additional information to help in error detection and correction

for example. We will not concern ourselves for the time being with those other forms of redundancy

until chapter 8.

As for the “floating point” part of the thesis title, the word floating is used here with the meaning

“continually drifting or changing position” and the point to which we refer is the fractional point

delimiting the integer part of a number from its fractional part. The reason this point is floating

is that a normalized scientific notation is used. In such a notation, a number can be represented

by one non-zero digit preceding the fractional point and the subsequent digits following the point

multiplied by the radix of the system raised to some exponent (xn−1.xn−2 · · ·x0 × βexp, with

xn−1 6= 0.) An alternative definition is to say that the number is represented by the digit zero

preceding the fractional point and then a fractional part starting with a non-zero digit and all of

that multiplied by the radix raised to some exponent (0.xn−1xn−2 · · ·x0 × βexp, with xn−1 6= 0.).

For example, in decimal, the number three hundred and forty two can be represented as 3.42 × 102

according to the first definition and as 0.342×103 according to the second definition. Using the first

definition, if we multiply 3.42× 102 by 10 the result of 34.2× 102 must be normalized to 3.42× 103.

The fractional point changed its position after this multiplication, hence the name floating point.

Obviously, to represent a negative number an additional piece of information can be added to the

representation to define the sign. In both definitions mentioned above, the number zero cannot be

correctly represented as a normalized number since it does not have any non-zero digits and needs a

special treatment. In this thesis, we will adopt the first definition with one non-zero digit preceding

the floating point to denote a normalized number. The exact definition of normalized numbers using

the redundant digits is formalized in chapter 2.

The word system is generally used in English to denote “a regularly interacting or interdependent

group of items forming a unified whole.” So, the work presented here is not only going to treat

floating point numbers but also the use of redundant digits to form a complete system performing

addition, subtraction, multiplication and division.

Such a system is not a pure mathematical system. It is rather for use in computers. This adds

some constraints but the main one is the limit on the number of digits to be used. This limitation

translates into the representation of only a finite set of numbers. All other numbers from the set

of real numbers are not representable. Some of the effects of this finitude are clear. Definitely any
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irrational number with an infinite number of digits after the fractional point is not representable.

The same case applies for rational numbers whose representation as a floating point number is

beyond the number of digits available. For example, if we assume a decimal number system with

five digits after the fractional point then a number like 1234567/500000 = 2.469134 cannot be

represented exactly. Increasing the number of digits used to six may help to include an accurate

representation for that rational number, however, numbers like
√

2, e and π are still not represented.

This finitude also means that there is an upper bound on the numbers that are representable. If

an arithmetic operation has a result beyond this upper limit a condition called overflow occurs and

either the hardware or the software running on top of it must handle the situation differently to get

a meaningful result. Similarly, a lower bound on the minimum absolute value of fraction exist and

a condition called underflow occurs if an arithmetic operation has a result below this limit.

1.2 Benefits and objectives

This work investigates the question of when does such a redundant digit floating point system

outperform the conventionally used systems in their speed of operation. The emphasis is on speed

because the design requirements for a Floating Point Unit (FPU) adder or a multiplier are usually a

specified minimum frequency of operation or a maximum time delay. Sometimes both, the frequency

and the delay, are optimized as these are different parameters and not reciprocals. In non-pipelined1

hardware they are reciprocals while in pipelined FPUs the frequency is determined by inverse of the

time delay of one stage of the pipeline while the total time delay is approximately the single stage

time delay multiplied by the number of stages. So frequency and total time delay are related but

not necessarily reciprocals.

The design constraints on the other hand are the area and the power budget alloted to the FPU.

With larger chips currently produced, area is not as critical a constraint as power. This is even more

true for the battery operated portable devices. We briefly consider the subject of power consumption

in chapter 8. However, the main objective of this research is the quest for more speed.

1.3 Reviewing floating point standards

If we want to use a floating point system, we need to define several aspects. Those include the

number system, the location of the fractional point and whether the numbers are normalized or

not. Because of this need, several formats arose, some were de facto standards used by large

companies2 and some were developed by standardization bodies such as the Institute of Electrical

1pipelined hardware is where the circuit performing the operation is divided into stages. Each stage gets its inputs

from storage elements that saved the output of the previous stage. A clock synchronizes the whole circuit.
2Some of those are the floating point system of IBM and Cray.
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Sign Biased exponent Significand s=1.f  (the 1 is hidden)

+/− e + bias f

32bits: 8 bits, bias = 127 23 + 1 bits, single−precision or short format

64bits: 11  bits, bias = 1023 52 + 1 bits, double−precision or long format

Figure 1.1: IEEE single and double floating point number format.

and Electronics Engineers (IEEE). The IEEE standard was developed in order to support portability

between computers from different manufacturers as well as different programming languages. It

emphasizes issues such as rounding the numbers correctly to get reliable answers. At the time of

this writing, the IEEE standard is the most widely used in general purpose computation. Hence it

will be explained in more detail.

The IEEE produced a standard for binary floating point arithmetic in 1985 [4] and a second

complementary one for radix independent floating point arithmetic in 1987 [5]. Both standards

propose two precisions for the numbers: a single precision and a double precision. The single and

double precision numbers in the binary IEEE standard are formed as shown in Fig. 1.1. The most

significant bit is the sign bit (sign) which indicates a negative number if it is set to 1. The following

field denotes the exponent (e) with a constant bias added to it. This excess bias is a positive number

added to the exponent field to enable the representation of negative exponents easily as positive

binary numbers. So, a real exponent of −3 is represented as a biased exponent of 124 when the bias

is 127. With this biased exponent notation, as numbers get smaller and have negative exponents

they gradually approach the value of zero which is represented by an all zeros bit string. As shown

Fig. 1.1, the remaining part of the number is normalized to have one non-zero bit to the left of the

floating point. This last part is called the significand because it is not strictly a fraction but consists

of an integer portion and a fractional portion. Since this is a non-redundant binary system, any

bit is either 0 or 1. Hence, the normalized numbers must have a bit of value 1 to the left of the

floating point. The value of the bit is always known and thus there is no need to store it and it is

implied. This implicit bit is called the ‘hidden 1.’ Only the fractional part (f) of the significand is

then stored in the standard format. To sum up, the number given by the standard format has the

value (−1)sign × 2e × 1.f .

The biased exponent has two values reserved for special uses: the all ones and the all zeros. For

the single precision those values are 255 and 0 giving a maximum allowed real exponent (Emax)

of 254 − 127 = 127 and a minimum exponent (Emin) of −126. Table 1.1 summarizes the maximum

and minimum exponents for the single and double precision. As for the special values, their inter-

pretation is as shown in Table 1.2. If the exponent field is all ones and the fraction field is not zero

then this represents what is called ‘Not a Number’ or NaN in the standard. This is a symbolic entity
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Table 1.1: Maximum and minimum exponents in the single and double IEEE precisions.
Parameter Single Double
Exponent width in bits 8 11
Exponent bias +127 +1023
Emax +127 +1023
Emin −126 −1022

Table 1.2: Encodings of the special values and their meanings.
Exponent bits Fraction bits Meaning
All ones all zeros ±∞ (depending on the sign bit)
All ones non zero NaN (Not a Number)
All zeros all zeros ±0 (depending on the sign bit)
All zeros non zero denormalized numbers

that might arise from invalid operations like +∞−∞.

If the exponent field is zero and the fraction field is not zero then it represents a denormalized

number which is defined in the standard as:“A nonzero floating-point number whose exponent has

a reserved value, usually the format’s minimum, and whose explicit or implicit leading significand

bit is zero.” The denormalized numbers are used to provide for a property called gradual underflow.

The basic idea behind gradual underflow is to preserve the veracity of the mathematical relation

x − y = 0 ⇒ x = y. In a system where gradual underflow is not implemented, if the difference of

two numbers is less than the minimum representable normalized number then the result might be

flushed to zero and the previous relation is not preserved. With gradual underflow, the difference is

represented as a denormalized number and is not equal to zero, hence the relation is preserved.

The standard also defines extended precisions corresponding to the single and double precisions.

For these extended cases the significand’s precision (t) must be higher than that of the corresponding

basic format as follows:

text ≥ tbas + dlog2(Emaxbas
− Eminbas

)e
text ≥ 1.2tbas

Emaxext
≥ 8Emaxbas

+ 7

Eminext
≤ 8Eminbas

For double extended, this results in text ≥ 64 and the exponent field width being greater than or equal

to 15 bits. In those extended precisions, the standard allows the use of redundant representations.

To understand the reason for having single, double as well as extended precisions we should

clarify the meaning of the word precision as it is used in this context. The precision of a number is
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the mathematical value of the unit in the least place (or ulp as it is sometimes abbreviated). For

the 32 bits single format the ulp of the significand is equal to 2−23 ≈ 10−7. So, we only have about

7 significant decimal digits in such fractions which is obviously not enough for some calculations.

Double precision gives 2−52 ≈ 10−16, i. e. 16 decimal places after the fractional point. Higher

precisions are achieved by the use of the extended precisions defined by the standard which are

usually handled by firmware. The quest for more precision in some calculations (specially scientific

computations on supercomputers like the Cray machines) led the committee that is currently revising

the standard to include a quad precision in the revision that should be published in the near future.

The standard has another feature that is worth explaining: the rounding modes. Any arithmetic

operation must be carried out to give its result as if it was infinitely precise. Rounding is then

applied to fit this precise result into the precision (single, double or extended) required by the user.

The result is rounded according to one of the following four possible modes:

Round to Nearest Even, RNE: round to the value nearest to the infinitely precise result. If the

two nearest representable values are at equal distances choose the one with the least significant

bit equal to zero (the even number if viewed as an integer). This is the default rounding mode.

Round to Zero, RZ: round to the value closest to and not greater in magnitude than the infinitely

precise result.

Round to +∞, RP: round to the value closest to and not less than the infinitely precise result.

Round to −∞, RM: round to the value closest to and not greater than the infinitely precise result.

Some applications, such as graphics and digital signal processing, might not need all these round-

ing modes, precisions or even the gradual underflow property. If a designer is implementing a special

purpose system for such an application there is no need to comply to all those details from the stan-

dard and he/she can do whatever suits the application. On the other hand, the majority of the

general purpose processors implement the standard with all of its details. For uniformity in the

design of the datapath of the processor, designers usually choose to implement in the hardware the

double precision (or the double extended precision) and then narrow the result to a single precision

if this is what the user requires.

Kahan provides details on the status of the standard, features and examples in his lecture notes [6]

while a recent interview with him [7] details the history of the standard.3

3 The standard is currently undergoing revision and designers who are interested to know about new features or

help the revision committee should consult their website at:

http://grouper.ieee.org/groups/754/index.html
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Table 1.3: Frequency of floating point instructions on the MIPS architecture for five programs of
the benchmark SPECfp2000.
FP instruction applu art equake lucas swim average % to FP instructions
Load 11.4 12.0 19.7 16.2 16.8 15.22 0.35
Store 4.2 4.5 2.7 18.2 5.0 6.92 0.16
add 2.3 4.5 9.8 8.2 9.0 6.76 0.16
subtract 2.9 0 1.3 7.6 4.7 3.30 0.08
multiply 8.6 4.1 12.9 9.4 6.9 8.38 0.19
divide 0.3 0.6 0.5 0 0.3 0.34 0.01
other 0.7 2.4 1.8 5.0 0.9 2.16 0.05

1.4 Floating point operations

The major floating point operations are: add, subtract4, multiply, divide, square root as well as

loading and storing floating point numbers. These operations constitute the required operations

in any system supporting the IEEE standard. In other systems where the standard is not used,

those remain the operations most frequently implemented. Other elementary functions like log, sin,

tan, sinh, . . . are not always present in hardware implementations and their speed of execution is

considerably slower.

The occurrence frequency of an instruction is defined as the number of times this specific opera-

tion occurs divided by the total number of occurrences for all instructions constituting a benchmark.

The floating point instructions reported in a recent study of the instruction mix [8] in five programs

is reported in Table 1.3. In an older study [9] on the same architecture the reported numbers were

significantly different. In the older study, the add and subtract instructions account for about 40%

of the floating point instructions. The share of the multiply is 37%, that of the divide is 3% and

that of the square root is 0.33%. The move instruction in that older study account for about 10%.

Studies of instruction frequency vary due to different factors but the most important among them

is the compiler used and the kind of optimizations it made. However, studies seem to agree that

that the addition/subtraction unit is the most heavily used part since it is used in addition, sub-

traction and sometimes format conversion as well. The multiplication unit follows as a close second.

Although the divide instruction is not very frequent, if the division unit is too slow it can cause a

large performance degradation for the whole system.

Due to these facts, the research presented here focuses on enhancing the performance of the

addition and multiplication while preserving the performance of the division.

4The add and the subtract are done by the same piece of hardware since the floating point numbers are signed

and adding two numbers with opposite signs constitutes an effective subtraction.
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1.5 Layout of the research

In this work, a new internal format is proposed in chapter 2 to represent the floating point numbers

within the FPU and its associated registers. This format uses a redundant representation and is

based on the definition of the double format of the IEEE standard for floating point arithmetic.

On loading a number into the FPU, it is transformed to this format then all the operations occur

using it as long as the operands reside in the register file. If a store operation is issued, the number

is transformed to the basic single or double precision as required. Chapter 3 details a parametric

time delay model developed to compare the proposed architectural designs with state of the art

implementations.

Correctly rounding the numbers according to all the modes of the IEEE standard proved to

be one of the challenges in this work. The other related challenge is performing the leading digit

detection in case of a subtraction. Both challenges and their solutions are outlined in chapter 4 where

the design of the adder is presented and compared to other state of the art designs. The design of

the multiplier follows in chapter 5. Then, the division operation and the elementary functions are

discussed in chapter 6. Finally, the issues relating to integrating the whole floating point unit with

the rest of the surrounding hardware system are presented in chapter 7.

Since research is never ending, chapter 8 presents some open issues for future work.



Chapter 2

Redundant alternatives

2.1 Why an alternative format

The quest for higher performance in FPUs and the attempt to reach the theoretical limits on the

speed of computations has been the leading cause for advancements in designs in the past few

decades. Several designers proposed the use of different formats for representing the numbers within

the FPU in order to achieve better speed [10, 11]. Some implementations of commercial products

(for example the x86 family of processors and their clones [12]) use internally a representation that

speeds the processing while complying externally to the IEEE standard. In other cases, companies

needed to retain other formats used by their machines while introducing the IEEE standard. The

resulting implementation uses an internal format different than that of the standard. This latter

case is exemplified by the current S/390 architecture [13].

An example of integer addition in the decimal system can help us explain some of the concepts

that we need here. Consider the addition: 6789 + 3214 = 10003. The value of least significant digit

(3) of the result depends only on the values of the least significant digit of each of the two inputs.

Namely, the 9 and the 4. On the other hand, the value of the most significant digit (1) depends

on all the digits of the two inputs. Intuitively, if we implement an adder in hardware the output

that depends on the largest number of inputs takes the longest time to be computed. Obviously,

the type of technology used affects this time. So, if a logic gate accommodating a large number of

inputs exists we can use it and finish the computation faster. The maximum number of inputs that

a gate takes is called the fan-in. If large fan-in gates do not exist we need to build a tree of smaller

gates to achieve the same logic function of the larger gate and incur a longer time delay. Those two

factors, the number of inputs affecting any output and the fan-in of the gates in the technology are

important in driving the decisions regarding circuit optimization for increased performance.

Winograd [14, 15] and later Spira [16] worked to formulate the theoretical lower limit on the

time delay required to compute arithmetic operations. That limit is set by the largest number of

9
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inputs (n) affecting any of the outputs. The limit also depends on the fan-in (f) of the logic gates

in the technology used. Then the limit states that the time taken to perform the operation is bound

by τ ≥ dlogf ne where the time is given in units of gate delays. Spira proved this limit for any

function depending on n inputs and then commented “. . . this bound is extremely poor for almost

all functions. Amazingly enough, however, it is a tight bound for addition and multiplication time

and a good bound for division time.”

Once a specific technology for implementation is chosen, the maximum fan-in is set. The way

to speed on the algorithmic level thus becomes to decrease the number of inputs on which the

outputs depend and to simplify the logic functions used. A number system where any digit of the

output depends only on a small number of the input digits is then ideal to achieve the lower limit of

time delay. Two such possibilities are discussed here: the Residue Number System (RNS) and the

Redundant Representations for Numbers.

2.1.1 Residue Number System

The RNS [17] is based on the old Chinese number system where numbers do not follow the weighted

positional formula X =
∑

i=0 xiβ
i that we presented in the previous chapter. In the RNS a few

relatively prime numbers (i.e. with no common factors) are chosen to form the bases or the weights

for the positions. For example, 9, 8 and 7 can be the bases for an RNS and each number is then

represented by its residues with respect to those bases. So, 145, 166 and 311 are represented as

145 ⇒ {145 mod 9, 145 mod 8, 145 mod 7} = {1, 1, 5}
166 ⇒ {166 mod 9, 166 mod 8, 166 mod 7} = {4, 6, 5}
311 ⇒ {311 mod 9, 311 mod 8, 311 mod 7} = {5, 7, 3}

Notice that (5+5) mod 7 = 3, (1+6) mod 8 = 7 and (1+4) mod 9 = 5 which means that adding the

representation of 145 to that of 166 using the corresponding bases as moduli gives the representation

of their sum, 311. Using RNS, each output digit depends only on the corresponding input digits

and there is no carry propagation. This property makes it ideal from the speed of operation point

of view for addition. The same property exists for subtraction and multiplication. However, the

division and square root operations, comparing the magnitude of two numbers and sign detection are

difficult operations in such a system. These operations can be done in a restricted form such as the

division by a constant [18]. In general however, there is a need to convert from RNS representations

to a weighted positional representation to accomplish those operations efficiently on any operands.

The two main problems of RNS are:

1. The system is not complete and does not allow for all of the needed primitive operations.



CHAPTER 2. REDUNDANT ALTERNATIVES 11

2. Conversion to and from this system is often needed and it is a complicated and time consuming

operation.

Due to these inherent limitations, the RNS is not widely used in general arithmetic circuits. It

does have, however, specific areas of applications like cryptography [19] and digital filters [20, 21].

2.1.2 Redundant Representations

Another method for decreasing the number of digits on which any digit in the output depends is the

use of a redundant representation. Redundant representations can be used in any number system.

For example, in the old Roman system if the improper form “IIII” representing 4 is allowed along

side with the canonical form “IV” then we get a redundant representation. In the Indo-Arabic

system allowing more than ten different numerals at any digit position will result in a redundant

representation as already noted in chapter 1. Redundancy can be even applied to the residue number

system [22] and in the logarithmic number system [23] (which is yet another number system with

which we are not dealing in this work). Redundancy appears also in the implementation of high

performance multipliers and dividers [24]. In a multiplication unit, the Booth recoding is a redundant

representation of one of the operand. Keeping the sum of the partial products in a carry save form

is another exploitation of redundancy. The division units implementing the SRT algorithm use

redundant numbers.

To understand why redundancy is of importance consider a simple example based on the signed

digit numbers first introduced by Avizienis [25] and later expanded by Parhami [26]. Ordinary Signed

Digit (SD) numbers [27, 28] represent a number in radix β > 2 with digits xi ∈ {−α, · · · , 0, · · · , α}
where β

2 < α < β. When summing two digits: pi = xi + yi, if ±pi ≥ α, the digit is recoded as

wi = pi ∓ β and a carry ci of ±1. The final sum is then given by si = wi + ci−1

The condition on α guarantees that −α + 1 ≤ wi ≤ α − 1. So the intermediate wi sum can absorb

any carry.

In the following example, we assume that β = 10 and α = 9. Any negative digit is denoted with

an over-line in order to clarify the representation, i.e. 1 8 = (+1) × β1 + (−8) × β0 = 0 2. The

left hand side represents an addition operation done using signed digits while the right hand side

represents the same operation with a non-redundant representation.

2 1 8 2 0 2

+ 7 9 9 + 7 9 9

9 10 1 | p |≥ α? 9 9 11

1 1 0 c

1 0 1 w

1 0 0 1 s 1 0 0 1
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All the digit positions in the signed digit side can be done in parallel and the result obtained

quickly. On the other hand, in the non-redundant representation the worst case carry propagates

from the least significant digit to the most significant digit. In the case of signed digits as described

above, the output digit depends on the input digits at two positions: the corresponding position and

the adjacent lower order. This fundamentally changes the time delay for the operation. Instead of

depending on all the digits, the most significant digit of the output, as well as all its digits, depend

on a much smaller number of input digits. In fact, Kornerup [29] proves that converting from any

number system using a redundant or non redundant digit set to another with a non redundant

digit set is an operation of O(log n), i.e. it takes an amount of time proportional to the log of the

number of digits in the number. He also proves that conversion to a redundant digit set can be done

in a constant time regardless of the number of digits in the number. Blair [30] takes the special

case of converting redundant binary to two’s complement numbers and shows that it is equivalent

to two’s complement addition. The work of Kornerup, on the other hand, is independent of the

actual encoding of the digits and of the circuit implementation. He demonstrates that “arithmetic

algorithms and their properties can be analyzed at the digit level, the actual encoding of digit value

is only of concern when designing the actual circuitry.”

The research of Parhami on generalized signed digit number systems [26, 31] concentrates, as

Kornerup remarks, on the digit level. The same is true for another attempt at presenting a unified

framework for redundant number representations by Phatak and Koren [32] which they called the

hybrid signed digit. This unified framework includes the two’s complement representation and the

signed digit representation as special cases. The hybrid signed digit system, in contrast to the work

of Parhami, allows some digits to be signed while others are unsigned and allows for a non uniform

distance between the signed digits.

Some researchers did propose actual designs. A number of those concentrated on only the multi-

plication. As noted earlier, Booth recoding and the use of carry save adders are both introductions

of redundancy but the researchers went further than that. Ferguson and Ercegovac designed a

multiplier accepting its operands in a redundant representation [33]. Makino et al. implemented a

54bit×54bit multiplier using a redundant binary architecture and compared it with the conventional

designs [34]. Takagi et al. also designed a multiplier with a redundant binary addition tree [35].

Ercegovac and Lang pioneered the technique that they called “on the fly conversion” enabling a fast

method to get the most significant part of the multiplication result without carry propagation [36].

Other multiplier implementations included the use of hybrid signed digit representations [37], re-

coded binary signed digit [38] and signed binary digits [39].

Other researchers went beyond multiplication. Practically, any work using the SRT algorithm [24,

40] for division uses redundancy. Nielsen et al. presented a pipelined adder that accepts one of its

operands in a redundant representation [41]. Edamatsu et al. implemented a multiplier and a divider

using a redundant binary representation [42]. Piuri and Stefanelli proposed the use of redundant
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binary representations for fault-tolerant arithmetic [43]. Ramamoorthy et al. studied the use of

signed digits in digital signal processors architectures [44]. Morales proposed a convention for signed

binary floating point [10]. Chen suggested a bit parallel arithmetic processor using a redundant

binary representation [45]. Saed et al. went even further and proposed arithmetic with signed

analog digits [46].

Some research was done specifically on the issue of converting between digit sets. Because of its

wide use in multiplier circuits, Booth recoding is an important form of conversion into a redundant

representation. Vassiliadis et al. studied and proved the correctness of the multiplication using

the different schemes for Booth recoding [47]. Lyu and Matula looked at the Booth recoding of a

redundant binary number [48] while Sam and Gupta studied the issue of multi bit recoding of a

two’s complement number in general and applied it to multipliers [49].

Yen et al. studied efficient conversion from redundant representations to binary numbers [50] on

the logic level while Wey et al. implemented a self-timed circuit for the same problem [51].

Daumas and Matula studied a special form of recoding that allows a partial compression of the

redundancy available in the original digit set [52, 53].

Going back to the problems that we found with the RNS, we see that redundant representations

solve the problem of providing a complete system. The needed operations for a floating point unit

(addition, multiplication and division) are possible in this case. In fact, various implementations have

been proposed for specific units. Conversion time delay however remains an issue. Fundamentally,

it takes an O(log n) time delay and cannot be done faster [29]. The question then becomes:“Is it

possible to design a system where the number of conversions is minimized or where the conversion

is done in parallel with another needed operation?”

2.2 Overview of the proposed system

What is proposed here is a number format very similar to that of the IEEE standard. We represent

every 4 bits of the significand redundantly as a signed digit number by using 5 bits in two’s comple-

ment form. The fifth bit (extra bit) thus has the same mathematical value as the least significant bit

(LSB) of the next higher group but opposite sign. This is shown for the string of bits a4, a3, a2, a1, a0

in Fig. 2.1. However, it is saved in the register file of the FPU to the right of that LSB and to the

left of a3. The bits for G, R and S are those for the guard, round and sticky digits respectively

since the numbers are saved to the register file unrounded. The reason for this is detailed later. The

significand is always positive, as in the IEEE format, so there is no need for an extra bit in the most

significant digit. It is also always normalized. Denormalized IEEE numbers are dealt with upon

loading into the register file to normalize them. The definitions for infinities, NANs, and zeros are

similar to the IEEE format. It is assumed that the base for the exponent is 16 and not 2 as the

normal IEEE format. So, the number is given by (−1)sign×16exp−bias×first digit.remaining digits.
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Figure 2.1: The proposed SD format for floating point numbers.

The basic idea is to use a redundant representation with signed digits instead of the standard

format. The use of a hexadecimal-based exponent is not new, it was used in the IBM mainframes

and survives in the current S/390 architecture [13] which supports both the hexadecimal and the

IEEE standard formats.

2.2.1 Reasons behind the choice of field widths and exponent base

To explain the choices, a binary base for the exponent can be assumed first instead of the hex-base

with an exponent field width of 17 bits and bias of 65535. The width of 17 is chosen so that any

denormalized number of the IEEE standard can be put in a normalized form in the internal format.

Since the IEEE double precision format has 11 bits in its exponent field and the least denormalized

number might need to be shifted left by 52 bits, then an additional 6 bits (25 < 52 < 26) are

necessary to accommodate it. In this case, when the numbers are loaded into registers, the IEEE

format can be converted to the proposed format just by extending it with zeros as the additional

bits in the significand to preserve the value of the number. The additional bits here mean the extra

bit of each group of 4 bits to form an SD number as well as the trailing positions for single precision

and the G and S bits. Then, the exponent bias needs to be adjusted accordingly. So, if the original

number is in single precision, there is a need to subtract 127 and to add 65535. Such a binary-base
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format would be a straight forward extension of the IEEE format. However, a higher base provides

several positive results. For example, a hexadecimal-base is better than the binary-base because

of the shifting needed for aligning the operands and for normalization in case of addition. If the

exponent base is binary a shifter capable of shifting to any bit position is needed. On the other hand,

if the exponent base is hexadecimal, only shifts to digit boundaries (4 bits boundaries) are needed.

Obviously, with a hexadecimal-base, only 15 bits are needed to represent the same exponent range

as the 17 bits needed for a binary-base. A higher base makes the shifting easier but it produces a

less redundant number.

The choice of a hexadecimal-base is due to the different factors that affect the choice of the radix

for the digits forming the numbers in the current system as well as the possible digit values.

• The carry-free addition and negation of SD numbers are simpler when the set of digits chosen

is symmetric around zero such as {−α, · · · ,−1, 0, 1 · · · , α}.

• Carry-free addition is possible if the number of different digit values (2α+1 in the above case)

is greater than the radix β by at least 2 when α > 1 and β > 2 [26].

• If α < β then the sign of the SD number is the sign of the most significant digit and the

number zero has only one representation which is all zero digits [31].

• When the design of the adders needed is considered, the use of α = β − 1 becomes the easiest

choice for implementation.

• If the value of the radix β is large then the carry delay within the digit becomes larger.

For all these reasons, the radix is chosen to be β = 16 (groups of 4 bits) and the digits are to be in

{−15,−14, · · · , 14, 15}. It is important to note that the radix of the digits in the significand does

not necessarily have to be equal to the base of the exponent. For example an exponent base of 16

can be used with radix of 4 (2 bits) for the significand digits.

As for the size of the significand part, the literature about the precision of various floating-point

number systems [54, 55, 56, 57, 58] defines two kinds of representational errors: the maximum

relative representation error (MRRE) and the average relative representation error (ARRE). The

terminology and notation for those errors in the different papers of the literature are not consistent.

Hence, we use a simple notation where t is the significand bit width in a system with exponent base

β and derive the equations giving those two quantities for any real number x. Then, we proceed to

use them in our analysis of the binary and hex-based systems.

Let x = fx ×βexp be an exact representation of x assuming that fx has as many digits as needed

(even an infinite number of digits if needed) but that fx is normalized. This means that 1/β ≤
fx < 1. Let the computer representation of x be fR × βexp. Then the error of the representation is
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error(x) =| fxβexp − fRβexp |. The MRRE is defined as the maximum error relative to x, i.e.

MRRE = max(
| fxβexp − fRβexp |

fxβexp
)

If the exact number is rounded to the nearest representation then the maximum error(x) is equal

to half the unit in the last position (ulp) or max(error(x)) = 1/2 × 2−t × βexp. Thus,

MRRE = max(
1/2 × 2−t

fx

)

The denominator should be set to its least possible value which occurs at fx = 1/β. Hence the

MRRE is given by

MRRE =
1/2 × 2−t

1/β
= 2−t−1β

In the derivation of the formula for ARRE, we use half of the maximum error since it is assumed

that the error is uniform in the range [− 1
22−tβexp, 1

22−tβexp) for any specific fxβexp. As for the

distribution probability of the numbers fxβexp in the system, it is assumed to be logarithmic and

given by p(fx) = 1
fx ln β

. This assumption is based on the work of McKeeman [58] who suggested

that “during the floating point calculations, the distribution of values tends to cluster towards the

lower end of the normalization range where the relative representation error tends to be the largest.”

To get the ARRE we perform the integration

ARRE =

∫ 1

1
β

1/2 × (1/2 × 2−t)

fx

1

fx lnβ
dfx

=
2−t

4 lnβ

∫ 1

1
β

dfx

f2
x

=
2−t

4 lnβ

[−1

fx

]1

1
β

=
β − 1

4 lnβ
2−t

An analysis of both the MRRE and ARRE of the binary (β = 2) and hex-based (β = 16) systems

reveals that more bits are needed in the case of hexadecimal digits in order to have the same or

better relative errors. If β = 2k and the width is tk the formulas for MRRE and ARRE can be

written as:

MRRE(tk, 2k) = 2−tk−12k

ARRE(tk, 2k) =
2k − 1

4k ln 2
2−tk

To have the same or better error for a base β = 2k in comparison to the binary-base (21), the gaps
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between two successive floating-point numbers in the larger base must be less than or equal to the

gaps in the binary-base. So, if the exponent in base β = 2k is ek then for base 21, gap1 = (21)e12−t1 .

For base 2k, gapk = (2k)ek2−tk . It should be noted that e1 = ek × k + q where | q |< k. In fact with

this definition, q is always a negative integer as illustrated by the following simplified example

exp. mantissa

β = 16 101 0010xxxxxxx

β = 2 before normalization 10100 0010xxxxxxx

β = 2 after normalization 10010 10xxxxxxx

So, The potential left shift for normalization of up to k − 1 positions makes q negative and it

falls in the range −(k−1) ≤ q ≤ 0. Specifically, in the case of k = 4, q ∈ {−3,−2,−1, 0}. With that

in mind, to have the same or better representation for the case of β = 2k the following must hold:

gapk ≤ gap1

(2k)ek2−tk ≤ (2)e12−t1

kek − tk ≤ e1 − t1

kek − (kek + q) ≤ tk − t1

−q ≤ tk − t1

In order to have the last inequality true for all the values of q then

tk − t1 ≥ k − 1

If tk is chosen to be t1 +k−1 and then substituted in the equation for MRRE, the maximum relative

representation error becomes

MRRE(tk, 2k) = 2−tk−12k

= 2−(tk−(k−1))

= 2−t1

which is intuitive. Equal gaps in both systems means that the same set of numbers out of the real

numbers range is being represented in both systems and hence the maximum representation error

must be equal.

The average relative representation errors on the other hand are not equal because of the different

distribution probability of the numbers. The ratio of ARRE(tk, 2k) to ARRE(t1, 2
1) is

ARRE(tk, 2k)

ARRE(t1, 21)
=

2k − 1

k2k−1
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=
2

k
(1 − 1

2k
)

So, for all k > 1, ARRE(tk, 2k) < ARRE(t1, 2
1).

For the case of k = 4 or β = 16 this analysis reduces to tβ=16 ≥ tβ=2 + 3. Since for the IEEE

standard, the double precision has tβ=2 = 53 then tβ=16 is chosen to be 56 bits or 14 hexadecimal

digits. Each of these digits requires an additional bit for its sign except for the most significant digit

which is always positive. The guard, round and sticky digits are represented by 5 extra bits. So, at

the end, the significand needs 56 + 13 + 5 = 74 bits which is what is shown in Fig. 2.1.

Another extended precision can be defined similar to the extended precision of the standard. For

the extended double precision of the standard, a minimum of 15 bits is required for the exponent

and a minimum of 64 bits for the significand. Using a similar analysis to what was presented above,

the width of the hex-based exponent field is at least 19 bits and tβ=16 ≥ 67. Since the digits are

four bits, the minimum tβ=16 is really 68 bits.

2.2.2 Conversion issues

On loading a number from memory the special cases of infinity, zero and NaN must be detected and

encoded properly. For the general case, to convert from the IEEE format to the presented format

both the significand and the exponent parts are modified. If the exponent of the IEEE format has

N bits, its bias is given by (2N−1 − 1). In the proposed format the bias is 214. If R is the remainder

of the division of the biased exponent exp of the IEEE format by 4 then

2(exp−(2N−1−1)) × 1.xxx · · · = 2(exp−2N−1) × 1x.xx · · ·
= 16(b exp

4 c−2N−3+214−214)2R × 1x.xx · · ·

Hence the new biased exponent for the hex-base is b exp
4 c−2N−3 +214. The value of N is 8 for single

precision and for double precision N = 11.

This amounts to shifting the exponent exp by two bits to the right then adding a one in the new

bit position 14 (the new LSB is bit position 0) and subtracting another in bit position N − 3. Or

equivalently, adding a string of all 1’s from bit position N − 3 to bit position 13. There is no need

to really perform an addition as shown in this example for the case of single precision numbers:

exxxxx exxxxx

−100000 = +011111111100000

+100000000000000

Which gives: eeeeeeeeeexxxxx. The hex exponent has the same bits as the shifted binary in

positions 4−0, then positions 13−5 are the complement of the original exponent’s MSB and finally
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bit 14 is equal to the original exponent’s bit MSB. A similar conversion occurs for the case of double

precision. This function can be called bthe as a short notation for Binary To Hex Exponent function.

As for the significand, if the original number is normalized in the IEEE format then four cases are

possible:

R = 0 001x.xxxx · · · ×16(bthe(exp)−214)

R = 1 01xx.xxx · · · ×16(bthe(exp)−214)

R = 2 1xxx.xx · · · ×16(bthe(exp)−214)

R = 3 0001.xxxxx · · · ×16(bthe(exp)−214+1)

For the case of R = 3 there is an added 1 in the exponent. If the original number is denormalized

then the leading non-zero digit must be found and the number left shifted to normalize it. The new

exponent would thus be equal to bthe(0)− shift amount. So, in general the exponent is given by:

exp16 =



































bthe(exp2) normalized and R = 0, 1, 2

bthe(exp2) + 1 normalized and R = 3

bthe(exp2) − shift denormalized

all ones exp2 is all ones

all zeros number is zero

So, conversion from the normal binary formats to the proposed SD format is quite simple and

at maximum would involve a short addition in the exponent to normalize denormalized numbers.

No conversion back is required as long as the number remains in the register file of the FPU. On

the occurrence of a store to memory operation, the number is converted by subtracting all the extra

bits of each group of 4 bits from the number. This is because the digits are represented in two’s

complement form and the two’s complement has the property described in the following Lemma.

Lemma 2.2.1 If a binary number x is represented in two’s complement form by the bit string

xnxn−1 · · ·x1x0, then x = (−1)xn2n +
∑n−1

i=0 xi2
i.

Proof:

• If x is positive, then xn = 0 and the statement is true by the definition of binary number

representation.

• If x is negative, then xn = 1 and the absolute value of x is equal to the one’s complement of

the xnxn−1 · · ·x0 bits plus one. This means:

x = −(

n
∑

i=0

(1 − xi)2
i + 1)
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= −(1 − xn)2n −
n−1
∑

i=0

(1 − xi)2
i − 1

= 0 −
n−1
∑

i=0

2i +

n−1
∑

i=0

xi2
i − 1

= −2n + 1 +

n−1
∑

i=0

xi2
i − 1

= (−1)xn2n +

n−1
∑

i=0

xi2
i

The fact that xn = 1 in this case was used in the last line above.

This concludes the proof since in both cases, the statement is true.�
So, the MSB of a 2’s complement number is treated as if having a negative value. Hence, all

the extra bits are to be subtracted from the number to convert it back to normal binary. This

subtraction does use a normal carry propagation adder and is the place where the conversion price

of a time delay of O(log n) is paid. The following section, however, discusses how this delay can be

hidden. The exponent also needs a conversion similar but opposite to the one needed while loading

the number into the floating point unit.

2.3 Potential gains from the proposal

Now is the time to answer the question asked before the overview of the system: “Is it possible to

design a system where the number of conversions is minimized or where the conversion is done in

parallel with another needed operation?”

Two points are important to help us answer:

• The conversion back to the normal IEEE format takes place only when a register is to be

stored in the main memory or to a write buffer outside of the floating point unit.

• With the current trends in processor designs, compilers optimize the code in order to have the

operands in the registers most of the time.

These points then indicate that the conversion happens at the frequency of the store operations.

This frequency can still be as high as 16% of the total number of floating point operations as indicated

in chapter 1. The first part of the question (minimizing conversions) is thus answered but not in a

very satisfying manner. The second part thus remains: can we hide the conversion delay with the

delay of the store operation? Looking at the steps performed to achieve the store operation in a

pipelined processor we see that it consists of:
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1. Fetch the operation

2. Decode it to realize that it is a store.

3. Load the operands from the register file. Those operands are the content of the register to store

in memory and possibly the content of another register that is used as an index for address

calculation.

4. Calculate the address. This is the execution stage in other regular operations. If an imme-

diate addressing mode is used (where the exact address is embedded in the encoding of the

instruction), the processor is idle in this step.

5. Write to the memory. This could be through a cache mechanism, so we will assume here that

it takes just one step and does not stall the processor.

What we notice here is that in step 4 the store operation is not using the floating point unit at all.

The address calculation is done using an integer adder and nothing operates on the floating point

number that is to be stored in the memory. It is during this time that we propose for the conversion

to occur. That entails adding a piece of hardware to operate on the floating point number in parallel

with the address calculation in order to remove the redundancy, round the number and put it in the

appropriate IEEE format.

If the processor issues its instructions in order, this proposed scheme completely hides the con-

version delay within the necessary delay of calculating the address in the store instruction. On the

other hand, if the processor issues its instructions out of order there is a chance that the address

calculation step of the store is executed before the floating point result that is to be stored in the

memory becomes ready. In such a case, the conversion delay is not hidden within the store and it

actually adds some time delay. The probability of this event obviously depends on the frequency

of the store, the distance in the program code between the store and the instruction producing the

output result, the rearrangements done by the processor and possibly other factors as well. The

added time delay might not even affect the following instructions if they are independent of the

store (i.e. they are not a load instruction trying to get the same result back from the memory) and

they are allowed to commit their results and end their execution before the store ends. Another

method of hiding the conversion delay in an out of order processor is to do it in parallel with the

translation from a virtual address to a real address in the cache and memory control units. So, in

out of order machines, the conversion delay might not always be possible to hide within the store.

However, because it is an out of order machine, other opportunities for hiding that delay arises and

can be considered in each specific architecture.

In conclusion, redundant representations allow us to easily perform the needed floating point

operations. The conversion back to the IEEE standard format is the point where an O(log n) time

delay occurs but usually it can be hidden within the store operation.



Chapter 3

Modeling reality

3.1 What is “reality”, why do we model it and why do we

use parameters?

Today, digital circuits are implemented mostly in Silicon using CMOS technologies. The minimum

feature size determines the minimum size of a transistor. This and the number of metal layers

available for wires as well as their electric properties are probably the most important aspects that

differentiate between CMOS technologies. They dictate to a large extent the speed of operation

and the area of a given functional unit. As the feature size decreases the logic gates get faster. If

there is not enough layers of wiring then the area of a basic cell is increased to allow for more wires

to pass adjacent to each other instead of on top of each other. If there is a need for long wires to

communicate across the chip then propagation delay is a factor affecting the speed of operation. The

percentage of this wire propagation delay to the time it takes the logic gates to process the signal

increases as the technology is scaled to smaller feature sizes [59].

The preceding paragraph constitutes reality in CMOS circuits. Other technologies are not dis-

cussed in this work. We restrict ourselves to static CMOS gates and CMOS pass gates. Switch

transistors can be used inside multiplexers and shifters but we do not consider the general use of

switch logic. Dynamic circuits, Domino logic and other circuit styles are not generally used in com-

mercially available floating point units. Our goal is to compare our proposed redundant digit system

to the state of the art systems and hence we restrict ourselves to what those systems use to have

a fair comparison. If in the future faster circuit styles are implemented in floating point units, the

increase in speed should be uniform on all the designs unless one of them relies on specific features

of the older circuit style.

One might ask then why is modeling needed? Is it not possible to fabricate the new design

and test it to see how it compares to other designs? Such a fabricated circuit would be really the

22
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ultimate test to check the veracity of any claims made about a design. However, this is a very costly

thing to do every time a designer considers a new idea. Floating point units are used in general

purpose processors, dedicated hardware for graphics and in digital signal processors. For a certain

application and design specifications (speed, area and power consumption), it may be necessary to

compare several architectures. A simple model is needed to help in targeting a design for use at a

different operand width (for example single and double precision), with a different hardware library

or with a different radix and number system. In the following section we develop such a model that

we use later to compare the proposed system to other designs.

The parameters of our model are the operand width, the logic gate fan-in and the radix of

the redundancy for designs using redundant representations. In special hardware for digital signal

processing or graphics applications, the operand format does not have to conform to a standard and

is usually dependent on the application and on the other design restrictions. The significand may

be 16 bits or less. Most general purpose processors conform to the IEEE standard which specifies

certain formats with specific operand widths. The hardware designer who already designed a floating

point unit for one format of the standard or for a specific application in graphics or signal processing

may find that the design is not optimal for another format. The proposed parametric model can

be used to identify the best architectures based on the given constraints. The range of desirable

operand widths, (n), is quite large spanning from about n = 8 bits to about n = 256 bits depending

on the application. Architectures that are beneficial for small operand widths may not be suitable

for large operand widths.

The logic gate fan-in (f) is the second parameter to consider. A large number of designs use

standard libraries with pre-designed components. The maximum fan-in of the standard gates is

limited. For CMOS technologies the fan-in limitation is due to the number of series transistors

that may be stacked in one pull-up or pull-down chain. Typical values for the maximum fan-in are

between about f = 2 and f = 4 inputs per gate. In dynamic circuits the fan-in might be up to

f = 6 inputs per gate.

The third parameter used in the model is the radix (2r) of the digits. Signed digits or other

forms of redundancy may be used to improve the unit’s performance as discussed in chapter 2. In

such designs, the operand width is divided into digits with some redundancy. The radix of the digits

can be as small as 2 (binary) or as large as the operand width (non-redundant). Practical values for

the radix range from radix 2 to about 256 or digit width between 1 and 8 bits.

In this chapter, we develop the model and then use it in chapters 4 and 5 to compare the proposed

adder and multiplier to other designs.
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Figure 3.1: In CMOS 0.6µm technology, the pull down time is 0.40ns and the pull up time is 0.44ns.
Hence, the FO4 is taken as 0.42ns. In 0.3µm technology the numbers are 0.19ns, 0.18ns and 0.185ns
respectively.

3.2 The time delay model and its validation

The model proposed here gives an estimate of the number of equivalent elementary delay units in

the critical path of the floating point hardware. The floating point unit delay is presented in “fanout

of 4” delays, or the delay of an inverter driving a load that is four times its own size. This is

commonly abbreviated as FO4 for the “fanout of 4” inverter.

The simulation tool irsim (a switch level simulator for transistors) is used to simulate a number

of circuits in order to validate the model. All the circuits are designed in a CMOS 0.6µm technology.

The first such circuit is a chain of inverters properly scaled so that each one is four times the size

of the preceding one as shown in Fig. 3.1. The chain is used to estimate the time delay of an FO4

inverter. The pull down time of the inverter is 0.40ns while the pull up time is 0.44ns. Hence, the

average delay unit is estimated to be 0.42ns.

In this model, for any integer adder the following simplified formula giving the gate delay of

conditional sum addition [17] is used:

τ = 5 + 2 × dlogf−1(d
n

f
e − 1)e

In the formula, n is the number of bits in the adder and f is the fan-in or the maximum number

of inputs for a gate in the design. A [4 : 2] compressor that adds four input bits plus a carry to

produce two output bits and a carry is assumed to take 3 FO4 delays while a (3, 2) counter that

adds three input bits giving two output bits takes 2 FO4 delays [60].

A single m-to-1 multiplexer is considered to take only one FO4 delay from its inputs to the

output assuming it is realized using CMOS pass gates. This assumption for the multiplexer is valid

up to a loading limit. Small m is the usual case in VLSI design since multiplexers rarely exceed say

a 5-to-1 multiplexer. Using irsim the 2-to-1, 3-to-1 and 4-to-1 multiplexers are simulated. They all

exhibit a time delay from the inputs to the output within the range of one FO4 delay (i.e. less than

0.42ns).

When the input lines are held constant and the select lines change, the delay from the select lines

to the output is between one and two FO4 delays. Hence, for a single multiplexer the delay from

the select lines to the output is bounded by 2 FO4 delays. A series of m to 1 multiplexers connected

to form a larger n-bit multiplexer heavily loads its select lines. Hence there is even a larger delay
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from the select lines to the output in this case. To keep up a balanced design with a fanout of four

rule, each four multiplexers should have a buffer and form a group together. Four such groups need

yet another buffer and form a super group and so on. The delay of the selection then is assumed

to be dlog4(n)e + 1. This last formula is applicable even in the case of a single multiplexer since it

yields 2 as given above.

The carry free signed digit adder used in the proposed designs is a number of parallel adders

each taking digits composed of r + 1 bits (radix = 2r) and adds them producing their sum, sum

plus one and sum minus one. Then a choice is made between those three outcomes. Because of the

more complicated carries in this scheme it is assumed that they take an additional FO4 delay. The

choice of which outcome of the adder to produce is basically a multiplexer that has a delay from its

select line to its output and then there is an additional FO4 delay for the last correction. So, the

total delay of the signed digit adder in FO4 delays is

τ = (5 + 2 × dlogf−1(d
r + 1

f
e − 1)e) + 1 + (dlog4(r + 1)e + 1) + 1

= 8 + 2 × dlogf−1(d
r + 1

f
e − 1)e + dlog4(r + 1)e

This is a conservative estimate for the signed digit adder. Running over 100000 random test vectors,

it is found that such an adder with r = 4, f = 3 and composed of three digits has a delay of 4.0ns

using the 0.6µm technology. This delay is less than the 10 FO4 delays predicted by the above

formula.

Shifters can either be done by a successive use of multiplexers or as a barrel shifter realized in

CMOS pass transistors. In either case, the delay of an n-way shifter from its inputs to its outputs

takes dlog2(n)e FO4 delays. The select lines are heavily loaded as in the case of multiplexers.

However, if the same idea of grouping four basic cells is used then the delay from the select lines is

the same as for the multiplexers. This is smaller than the delay from the inputs to the outputs in

the shifter. Hence the input to output delay dominates and is the only one used. A 16-way shifter is

designed using NMOS transistors and simulated with irsim. The model predicts that its delay must

be less than dlog2(16)e = 4 FO4 delays. Using a set of random inputs to stimulate the simulation,

the time delay from the inputs to the outputs is found to be less than 1.2ns. This delay is equivalent

to 3 FO4 so the model is also conservative in this case.

For other pieces of combinational logic where a specific design is reported in the published papers,

the delay can be estimated. If the design is not known, and the logic has n inputs then its time

delay is assumed to be dlogf (n)e FO4 delays. The different parts of the model are summarized in

Table 3.1.

Using units of FO4 delays makes the model independent of the technology scaling to a large

degree since this elementary gate scales almost linearly with the technology [59]. Such units also

make the model take into effect the time delay associated with the small local wires inside the FO4
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Table 3.1: Time delay of various components in terms of number of FO4 delays. f is the maximum
fan-in of a gate and n is the number of inputs.

Part Delay
Adder 5 + 2 × dlogf−1(dn

f
e − 1)e

[4 : 2] compressors 3
(3, 2) counters 2
Multiplexer, input to output 1
Multiplexer, select to output dlog4(n)e + 1
Signed digit adder 8 + 2 × dlogf−1(d r+1

f
e − 1)e + dlog4(r + 1)e

Shifter dlog2(n)e
Other (no design details) dlogf (n)e

inverter as well as those connecting it to neighboring gates. However, the model does not include

any assumptions about long wires across the chip and the time delay associated with them. Hence,

obviously, it does not give an accurate estimate of the absolute delay of a logic unit. However, the

model can be used to compare different architectures to estimate their relative speeds. The reason

that the model does not differentiate between the delay time of the different types of gates is that

the designers usually change the sizes of the transistors in order to equalize the time taken by all

gates on the critical path.

3.3 Levels of evaluation

Modeling at the logic gate level as described above does not capture all the details of real CMOS

circuits. Design evaluation is an iterative process with several levels of complexity. At each level

different ideas are compared and the most promising are tried at the following level of complexity.

The levels that are proposed here are:

1. Modeling at the logic level just as described above. This does not provide very accurate

estimates and can be used for rough comparisons.

2. Implementing the design in transistors and simulating. This level forces the designer to think

about sizing the transistors and to buffer any gates that are driving a large fan-out. This level

gives a much more accurate estimation of the time delay but it still does not include the long

wire delays.

3. For more accuracy, a layout of the full circuit can be done to extract the details about the

wires. An extracted circuit (or at least its critical path) can then be simulated to give a more

accurate time delay estimate. Area and power consumption estimation are also possible at

this level.
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4. The design is actually fabricated and the chip is tested. This is the ultimate test for a proposed

design with a specific technology process and fabrication facilities.

5. To really show the merit of a proposed idea, the whole design can be simulated over a variety

of scalable physical design rule sets and one or more are fabricated and tested.

The model proposed in this chapter is used primarily to evaluate the general trade-offs in the

designs as illustrated in the following chapter. In chapters 4 and 5, the results of the first two levels

of evaluation for the proposed adder and multiplier will be reported.



Chapter 4

Addition unit

4.1 Conventional adder designs and their time delays

In the current state-of-the-art high performance floating point adders, two-path algorithms [61] are

used with integrated rounding [62] as shown in Fig. 4.1. These adders perform both addition and

subtraction. An effective subtraction occurs when both operands are of the same sign and the

required operation is a subtraction or when the operands differ in their signs and the operation is

an addition. In the case of effective subtraction and an exponent difference of zero or one, a number

of the leading bits of the result might become zero. In this case, a left shift of the result is needed

for normalization. The two-path algorithm separates this specific case into a path with a specialized

left shifter while other cases of operands pass through the regular path. The special path is called

the cancellation path (where the leading digits are possibly canceled) or the close path (where the

exponents are close to each other) while the regular path is called the far path. All floating point

adders include circuits to either detect or predict the position of the leading non-zero digit after the

subtraction is performed. The prediction circuits [63, 64] operate on the adder’s operands in parallel

with the significand addition. Prediction circuits are obviously more complicated than detection

circuits but they improve the overall adder time delay. In the far path, the right shift is performed

on the operand with the smaller exponent to align the two numbers and equalize their exponent.

The bits that are shifted out are used to determine the rounding decision. If the final adder produces

both the sum and the sum plus one it is called a compound adder. To speed up the rounding, a

compound adder is used and one of its outputs is selected as the rounded result [65].

Fig. 4.1 shows yet another possible improvement using a variable latency adder [66, 9]. If the

close path is chosen and the output does not need to be left shifted, that output is then ready after

just the first cycle (cycles are marked by the dashed line in the figure). If it needs a left shift as

indicated by the Leading One Predictor, LOP, and the priority encoder, PENC, it is available after

the second cycle otherwise it takes three cycles to finish. A collision detection circuit can be used to

28
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Figure 4.1: The conventional two-path adder.

prevent two outputs from getting out of the pipelined adder on the data bus at the same time. Some

recent attempts for improving the adder and simplifying its design include eliminating the need for

rounding in the close path [67]. To explain this idea, let us assume that the close path is only chosen

in the case of effective subtraction with all the additions regardless of the exponent difference going

to the far path. In this case, being in the close path, one of the operands is shifted at most by one

bit location. Hence, the result might extend at most by one bit on the least significant side. Having

only subtractions means that there can never be an addition overflow and there is never a need to

right shift the result for normalization. The MSB of the result is thus at most aligned with the MSB

of the inputs. There is still a need for a left shifter to normalize the number in case of a cancellation

of the most significant bits. If such a cancellation occurs and a left shift is needed, even by one

bit location, then the result is guaranteed to be accurately represented within the precision of the

format used and no rounding is necessary. Hence, if the conditions of using the close path become:

• exponent difference is equal to zero or one.

• only effective subtraction

• cancellation does occur

then this set of conditions guarantees that there is no need for rounding logic in the cancellation

path and the adder used there could be simpler to design and possibly slightly faster. A recent
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study [68] looked at various floating point adder designs from the literature and categorized the

different optimization techniques used in them.

The simple model presented in the previous chapter allows us to have a sense of the complexity of

some parts of the floating point addition algorithms. Shifting and adding are operations whose time

delay is an O(log n). In conventional designs, rounding adds a small value to the result and could

cause a carry propagation making it an O(log n) operation. It is usually combined with the addition

step [62] so that both time delays overlap. Another O(log n) delay corresponds to the leading one

prediction [64]. Although a redundant format that makes the significand addition independent of n

enhances the speed (slightly), improvements in the other delay factors such as postponed rounding

and the other features in the proposed system are integral to the design and are as important as the

redundant format. To quantify this argument, the proposed design for the adder is described in the

following section, then the assumptions of the analytical model are used to estimate its time delay.

4.2 Proposed adder design

The adder design presented here follows a conventional adder approach and uses a two-path algorithm

as shown in Fig. 4.2. The cancellation path is used only in the case of an effective subtraction with

an exponent difference of zero or an effective subtraction with an exponent difference of one and a

cancellation of some of the leading digits occurring in the result. In all other cases, the far path is

used. As explained above, these conditions simplify the cancellation path.

The far path of the proposed adder differs from the far path of conventional adders in some

unique aspects: first, the use of a hexadecimal base for the exponents; second, the location of the

rounding logic in parallel with the exponent difference and third the use of signed digit numbers

in the significand. The hexadecimal base of the exponents makes the right shift for alignment a

shift to a 4-bit boundary only. So, instead of using an n-way shifter in the conventional adders an

dn/4e-way shifter is used here. Such a reduction in the complexity of the shifter reduces its time

delay as discussed below. The parallel execution of the rounding logic with the exponent difference

logic takes the rounding away from the critical path of the adder. Our design simultaneously rounds

and negates the number to prepare the operand for the SD (signed digit) adder. The rounding block

is described in section 4.2.2.

As presented in Fig. 4.2, the far path proceeds as follows:

1. The rounding blocks produce the positive and negative rounded number corresponding to each

operand.

2. A signal indicating an effective subtraction selects the operand or its negative.

3. Another signal indicating the operand with the larger exponent permits the swapping of the

operands.
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4. The operand with the smaller exponent is shifted to the right for alignment and the bits that

are shifted out are used to calculate the guard, round and sticky bits. Only the least significant

bits of the exponent difference are used to indicate the shift amount.

5. If the exponent difference is large enough to completely shift out the smaller operand a zero

is forced as the second operand into the adder.

6. The SD adder is used to add the operands.

The result of the SD adder may need a normalization shift by one digit to the right for the

case of effective addition and an overflow. The result may otherwise need a normalization shift by

one digit to the left for the case of an effective subtraction and cancellation of the Most Significant

Digit (MSD). This cancellation of only the MSD can occur even when the exponent difference is

larger than one. The SD adder block produces the result and three signals indicating the need for

no shift, a shift to the left or a shift to the right. The guard, round and sticky bits are calculated

speculatively dependent on the shifting possibilities. The multiplexer unit responsible for choosing

between the far and cancellation paths receives those different signals and speculative results and

chooses the final result among them in case the far path is chosen.

In the cancellation path the exact exponent difference is not calculated but the least significant

bit of each of the two exponents is examined. If the two exponent bits are found to be identical the

difference of the exponents is speculated to be zero and the direct subtraction of the operands is

performed. If, on the other hand, the two exponent bits are not identical the difference is assumed

to be one and the subtracter produces a result equal to one operand minus the other operand shifted

by one bit to the right. The direct subtraction in the case of zero exponent difference may lead

to a negative result if the significand of the second operand is larger than the significand of the

first operand. To remedy this negative result in conventional adders, the sign of the floating point

result is flipped and the bits representing the result are negated. In our redundant digit design, the

subtracter produces the result and its negative and then one of them is chosen at the end depending

on the sign of the result.

So, for two operands labeled A and B, the calculation in the cancellation path proceeds as follows:

1. All the possible combinations are produced: A − B, A − shift(B), B − A and B − shift(A).

2. Since a complete calculation of the exponent difference does not occur in the cancellation path,

the rounding is done in conjunction with the significand subtraction. A round digit is computed

for each operand and is used within a signed digit subtracter to perform the subtraction.

3. Depending on the exponent difference, either the direct subtraction or the one involving a shift

is chosen.

4. A Leading Digit Detector (LDD) is used to calculate the shift amount needed to normalize the

result.
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5. This shift amount is applied to two shifters, one shifting the result and the other shifting the

negative of the result.

6. The sign of the leading digit is checked to determine the correct sign for the result.

The result and its negation as well as a signal indicating the sign of the leading digit are forwarded

to the multiplexer unit that selects between the cancellation path and the far path. This multiplexer

unit then selects the appropriate output.

4.2.1 First challenge: The leading digit detection

As noted above, leading digit prediction circuits [63, 64] operate on the operands of the adder

in parallel with the significand addition while detection circuits operate on the result. A recent

study [69] compared a number of the designs proposed for both prediction and detection. This

study shows that the predictors generate a string of bits having approximately the same number of

leading zeros as the output of the adder. Then a detection scheme is used on that string to encode

the location of the first non-zero element and control the normalization shifter.

In a number system that uses non-redundant digits, the first non-zero digit is the leading digit in

a normalized number. However, if a redundant format is used a few patterns may change the location

of the leading digit. This has been reported in the case of the prediction scheme proposed by Quach

and Flynn [64] as well as the work of Bruguera and Lang [63]. In both schemes the original operands

are not redundant while the prediction circuits are working on a redundant representation because

the prediction is done before the result of the adder is available. If a detection scheme was used

in those two cases, there is no need for complicated pattern matching. In the case of the proposed

signed digit format, the operands are redundant and the result of the adder is also redundant. So,

even in a detection scheme pattern matching is required.

A few possible patterns become the hard cases in detecting the first non-zero digit. In fact,

the leading zeros may be expressed directly as zeros or indirectly as leading insignificant digits: a

leading 1 followed by −15s or a leading −1 followed by 15s. The leading 1 (−1) can be converted

to a zero and borrowed into the neighbor −15 (15) digit position as a 16 (−16). Since 16 − 15 = 1

(−16 + 15 = −1), the zero propagation may continue into lower significance digits. The following

example illustrates how leading non-zero digits may be actually representing leading insignificant

digits. Assuming | l |< 15 ,

1 −15 −15 · · · −15 l m · · · = 0 0 0 · · · 1 l m · · ·

−1 15 15 · · · 15 l m · · · = 0 0 0 · · · −1 l m · · ·

Another pattern is 100 · · ·00 − ve = 011 · · ·10 + ve. This pattern and its dual (−1)00 · · ·00 + ve

cause a fine adjustment in the case of the previous work [64, 63]. The fine adjustment is basically

to indicate that the location of the leading digit should be shifted by one position. We can mentally

think of a first step detecting the leading zeros and the leading insignificant digits as being a coarse
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detection while the fine adjustment is a following separate step. In the fine adjustment step if the

leading digit is 1 and is not followed by another positive digit but by 0 then we must detect the sign

of the remainder of the number. If that sign is negative, a fine adjustment is needed. The dual case

holds for a leading −1.

The need to detect special cases for +1 followed by −15 or −1 followed by +15 can be eliminated

by the use of some recoding techniques similar to what was presented in the work on recoders for

partial compression [52, 53]. Daumas and Matula state [53]: “Partial compression also realizes virtu-

ally all the benefits of leading digit deletion.” The word virtually is important; partial compression

does not provide a solution for the fine adjustment cases. In fact, from a complexity and time delay

point of view, getting the exact bit location of the leading one is essentially the same as doing a carry

propagation. The fine adjustment is hence equivalent to transforming the redundant representation

into a non-redundant one. As described by Quach and Flynn [64], parallel addition and leading one

prediction are both problems of bit pattern detection. They also identified sticky bit computation

as the third problem of bit pattern detection.

The problem of finding the exact location of the leading bit in signed digit number is also

important for rounding. A rounding scheme for signed digit numbers was described by Matula and

Nielsen [11] in an adder using the packet-forwarding paradigm [41]. In that work, they used a signed

sticky digit as an indicator of the sign of the digit string after the first leading bit.

What is proposed in this work is to perform only the coarse adjustment of finding the leading

digit by eliminating any leading zeros or insignificant digits. The main advantage of using a signed

digit number system is to eliminate the carry propagation from the critical path. Replacing it

with another circuit similar in complexity (fine adjustment) defeats the purpose. Hence, the fine

adjustment is left to the rounding unit and a signed sticky digit is used there. The rounding occurs

in parallel with the exponent difference and not sequentially after the addition, so it is out of the

critical path. In fact, a comparison between the design presented here and the design of the adder

using the packet-forwarding paradigm [41] reveals that they are similar but with crucial differences.

In the proposed design, the final two to one adder of the packet-forwarding design is removed, the

signed sticky calculation is lumped with the rounding (which uses signed digit addition as well) and

both are done in parallel with the exponent difference of the following instruction. More details are

presented in section 4.3.

Based on the work on partial recoders [52, 53], two recodings are defined to delete the leading

insignificant digits. In the N-recoding a negative one is added to the digits and in the P-recoding a

positive one is added. More specifically, for two consecutive digits of the result si and si−1 with the

MSB of si−1 (si−14 , the extra bit) having the same weight as the LSB of si,

· · · si3 si2 si1 si0 si−13 si−12 · · ·
si4 si−14
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the N-recoding is defined as reseting si−14 and si0 to 0 if they were both 1. This is mathematically

correct since si−14 has a negative value. This recoding can create digits that are equal to −16,

however, this is not important since the recoded format is only used within the leading digit detector

(LDD) circuits and even with such “out of bound” digits the position of the leading digit can be

correctly estimated. The N-recoding when applied to the case of repeated −15 is:

digits k −15 · · · −15 l · · ·
equiv. k3k2k1k0 0001 · · · 0001 l3l2l1l0 · · ·
bits 1 1 · · · 1 l4 · · · · · ·
result k − 1 0 · · · 1 l · · ·

If the digit k is equal to 1, then the insignificant pattern consisting of 1 followed by negative digits

is eliminated by this N-recoding. The example assumes that the digit l is positive (i.e. l4 = 0)

giving a recoded result of 1 l · · ·. If l is negative then l4 is canceled reducing the recoded result

to 0 (16 + l) · · ·. This feature is of value since it ensures that the number is truly normalized. A

leading digit of 1 with a negative fractional part is not the normalized format. The condition for

the N-recoding to change the bits is si0 = si−14 = 1 and hence its output is given by sn
i0

= si0si−14 ,

sn
i−14

= si0si−14 while the remaining bits of the digit pass unchanged.

The P-recoding on the other hand is defined to eliminate the case of insignificant leading −1

followed by positive digits. Appendix A defines the P-recoding formally and discusses the order of

implementation of the two recodings as well as some simplifications of the logic equations.

4.2.2 Second challenge: Rounding

As mentioned earlier, the fine adjustment is performed in the rounding stage. This is the other

piece of challenging logic in the design at hand. In the proposed format the MSD has four bits.

The rounding stage must determine the leading one among those four bits in order to decide on the

approximate bit location for the rounding. The fine adjustment determines if the remaining part of

the number below the leading bit of the MSD is positive or negative. Those two indicators allow for

the decision on the correct bit location to apply the IEEE rounding.

Since the significand of the proposed format is always positive, the MSD has four bits only. Let

us denote these bits by a (most significant), b, c and d (least significant). On the other hand, the

LSD has five bits that we can denote by e (the extra bit with negative value), f (the most significant

positive bit), g, h, i (the least significant). The digit containing the guard round and sticky digits

is encoded so that Guard = −2g1 + g0 and S = −2s1 + s0. Hence it has g1 (a bit from the guard

digit with a negative value), g0 (a bit from the guard digit with a positive value), r, s1 (a bit from

the sticky digit with a negative value) and s0 (a positive value bit). The relative weight of each bit
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Table 4.1: Rounding value for the four IEEE modes and different fractional ranges

range RNE RZ RP RM
+ve −ve +ve −ve

−1 < f < −0.5 −1 −1 0 −1 −1 0
−0.5 −L −1 0 −1 −1 0

−0.5 < f < 0 0 −1 0 −1 −1 0
0 0 0 0 0 0 0

0 < f < 0.5 0 0 1 0 0 1
0.5 L 0 1 0 0 1

0.5 < f < 1 1 0 1 0 0 1

is as follows:
a b c d · · · · · · · · · f g h i g0 r s0

e g1 s1

A fractional value fi at bit location i of a signed digit binary number · · ·xi+1xixi−1 · · ·x0 can be

defined as fi = (Σj=i−1
j=0 2j ×xj)/2i . The decision of the digit added for rounding is then determined

by the fractional value at the rounding position. However, the value to add in order to achieve

the correct rounding does not depend only on the fractional range but also on the IEEE rounding

mode. In RP and RM modes, the sign of the floating point number affects the decision as well. The

decision is according to Table 4.1 where L is the bit at the rounding location. Since the fractional

value can be either positive or negative, the value added for rounding may be positive, negative or

zero. Compared to conventional IEEE rounding logic, more complicated situations arise in some of

the rounding cases for this redundant digit design. For example, the rounding to zero (RZ) mode of

the IEEE is not just a simple truncation but a −1 is added to the number at the rounding location

if the fractional value is negative.

In this design the fractional range is estimated and the rounding value decided speculatively for

each bit location in the Least Significant Digit (LSD). The resulting potential new LSDs after adding

each rounding value are also calculated. Then based on the circuits indicating the leading bit of the

MSD and the fine adjustment, the final rounded LSD is chosen. The details of the logic equations

governing the different cases and the circuit diagrams are given in appendix B.

4.3 Adder delay analysis and comparisons

The critical path of the proposed design starts with the exponent difference. This is a 15 bit adder

and not an 11 bit one as in conventional adders using double precision because of the special format

used in this design. In fact, the exponent width in this format expWF is equal to the conventional

exponent width expW (which is dependent on n as specified by the IEEE standard) expanded to allow
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for the normalization of denormalized numbers minus log2 r when the radix is 2r. The significand in

this format is also larger than the corresponding significand for the conventional designs because of

the redundancy. The significand width is dn
r
e × (r + 1) − 1. The swapping multiplexers must be as

wide as the significand and the output of the exponent difference is used to drive the select lines. Up

to this point, the delay is estimated to be 5+2×dlogf−1(d expWF
f

e−1)e FO4 delays for the exponent

difference followed by dlog4(dn
r
e × (r + 1)− 1)e+ 1 FO4 delays for the swapping multiplexers. The

operand then passes through a dn
r
e-way shifter which adds dlog2(dn

r
e)e FO4 delays. The following

multiplexer adds one more FO4 delay. The signed digit adder takes 8 + 2 × dlogf−1(d r+1
f

e − 1)e +

dlog4(r + 1)e FO4 delays. The select lines of the last multiplexer partially depend on the output of

the adder in order to determine if there is a need to adjust to the right by one bit. Hence, there is

a delay from the select lines to the output equal to dlog4(dn
r
e × (r + 1) − 1)e + 1 FO4 delays. The

total delay for this design is thus:

τadd = 16

+ 2 × dlogf−1(d
expWF

f
e − 1)e

+ 2 × dlog4(d
n

r
e × (r + 1) − 1)e

+ dlog2(d
n

r
e)e

+ 2 × dlogf−1(d
r + 1

f
e − 1)e + dlog4(r + 1)e

From this derivation we can evaluate the benefit coming from each of the novel ideas in this

design: the postponed rounding, the use of a higher radix base for the exponents and the use of an

SD adder.

Once the significand addition is reduced by redundancy, the rounding delay must be masked by

the delay of another part of the floating point operation that is as long or longer. Otherwise, it adds

to the overall delay of the adder. The exponent difference and multiplexers time delay (second line

and half of the third line of the equation) are both O(log n) operations. Both are essential and are

already on the critical path. Performing the rounding in parallel with them seems to be the best

choice. Hence, the rounding delay is effectively hidden.

The higher radix base for the exponent has an effect on the alignment shifter which only shifts

then to digit boundaries. The fourth line of the multi-line equation above captures this as a delay

of dlog2(dn
r
e)e rather than dlog2(n)e in conventional adders. Shifting is still an O(log n) operation

but its time delay is reduced by about log2 r when using a higher radix.

The effect of the SD adder is shown in the fourth line (and part of the constant of the first line)

where the terms 8+2×dlogf−1(d r+1
f

e−1)e+dlog4(r+1)e appear instead of 5+2×dlogf−1(dn
f
e−1)e

in a conventional adder.
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The effect of r on the shifter delay is the opposite of its effect on the SD adder delay. The amount

of redundancy (reflected by r) also has an effect on the area of the circuit and the required increase

in the register file. Hence, depending on the choice of n and f for the implementation, the benefit

from using a different radix for the exponent may be more than the benefit from the redundancy or

vice versa. To compare this design to other designs some assumptions regarding those parameters

are needed. For practical CMOS designs, the fan-in is usually limited to 3 or 4. The majority of

the floating point adders are currently designed to handle double precision numbers (n = 53) or

larger. For this range, the design proposed with r set to 4 or 8 provides the best performance [70]

as presented in section 4.3.2 with more detail.

4.3.1 Conventional systems

A number of state of the art floating point adders [41, 66, 67, 71] are used for comparison based on

the delay model described in chapter 3. As each of those published designs focuses on its own novel

aspects, some assumptions are made when not enough details are presented in the other parts of the

design. All of the designs selected use two-path algorithms for high-performance execution. In all

those examples, the far path takes longer than the close path. The results reported here assume a

longer far path.

Packet Forwarding adder [41]

The details of the packet forwarding adder are described in two other papers [11, 72]. The critical

path for this adder goes through the exponent subtract (11 bit subtraction), the significand swap,

and the alignment shifter (a full length shifter for the 65 bit significand) in the first cycle. In the

second cycle, the critical path includes two [4 : 2] compressors and the adjustment logic. The third

cycle requires the sticky digit calculation (implemented by a tree of multiplexers and hence having

dlog2 ne levels) and the rounding logic. The fourth cycle introduces the delay of the final operand

width (64 bits) carry propagate adder. This design has a long latency compared to other designs

but it provides an improved throughput due to the redundancy used. Using the model, the exponent

subtract takes 5 + 2 × dlogf−1(d expW
f

e − 1)e FO4 delays. The significand swapping is done with a

multiplexer that has the select lines coming from the exponent difference. So, dlog4(n)e + 1 FO4

delays is added for the swap. Next, the shifter takes dlog2(n)e FO4 delays. The two [4 : 2]

compressors in the second cycle add 6 FO4 delays. The adjust logic is not described in enough detail

to make a good delay estimation. The adjust logic is based on the signs of the two numbers and

the difference of the exponents, hence we can assume it to take only 2 FO4 delays. The adjustment

itself is a multiplexer whose select lines come from the adjust logic and takes dlog4(n)e + 1 FO4

delays. The signed sticky computation of the third cycle uses a tree of multiplexers [11] and hence

takes dlog2(n)e FO4 delays. The rounding logic is not specified and it has 10 inputs along with the

mode (four possible modes) and the sign of the result. The rounding logic is then assumed to take
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dlogf (15)e FO4 delays. The final adder takes 5 + 2 × dlogf−1(dn
f
e − 1)e FO4 delays. To sum all of

this, the packet forwarding adder has the following delay:

τpkt fwd = 20 + dlogf (15)e + 2 × dlog4(n)e + 2 × dlog2(n)e

+ 2 × dlogf−1(d
expW

f
e − 1)e + 2 × dlogf−1(d

n

f
e − 1)e

As noted above, this design has a high latency of four cycles but provides a higher throughput by

forwarding the operands after the second cycle. The time delay of the first two cycles determines

the throughput and is given by:

τpkt fwdThr
= 15 + 2 × dlog4(n)e + dlog2(n)e

+ 2 × dlogf−1(d
expW

f
e − 1)e

Comparing with τadd (the time for our proposed adder), we find that an addition instruction in

our design saves its redundant result without rounding to the register file and is completed by the

time τadd. In the case of the packet forwarding design (pkt fwd adder), this is not true. It still goes

through cycle 3 and 4 before committing its result to the register file. The addition is considered

as a completed instruction only after cycle 4. Our design performs the rounding in parallel with

the following instruction’s exponent calculation while the pkt fwd adder does it sequentially after

forwarding the redundant result. Obviously, a variation of the packet forwarding can be proposed

where the redundant unrounded result is saved to the register file. Such a variation then does the

sticky bit calculation and rounding somehow in parallel with the hardware of the first two cycles.

That variation might be faster than our proposal but it suffers from the fact that the saved result

is twice as large as the size of the IEEE numbers. Our design provides a solution to this by limiting

the redundancy. The variation of the packet forwarding can be considered as a fully redundant

design for floating point adders. This variation is included in the comparisons below to show the

limiting case and is labeled as pkt fwdThr. The complete time delay of the pkt fwd adder is also

included. The reader should notice that the complete time delay is quite large but the benefit is

superior throughput.

Variable latency adder [66]

The variable latency adder (VL adder) has the exponent difference (11 bit) and the swap in its critical

path for the first cycle. The second cycle includes the operand width shifter and the third cycle

has the half adder, the carry propagate adder (operand width), and a multiplexer. The exponent

subtract and the significand swap are on the critical path, similar to the case for the pkt fwd adder,

and take 5 + 2× dlogf−1(d expW
f

e − 1)e and dlog4(n)e+ 1 FO4 delays respectively. The shifter adds

dlog2(n)e FO4 delays. The half adder of the third cycle takes 2 FO4 delays. Although not explicitly
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reported, there must be a negation of the shifted operand in the case of a subtraction operation.

This negation is assumed to take one FO4 delay. The compound adder is assumed to take one

FO4 delay longer than a regular adder of the same width since it has an additional multiplexer

to choose between the sum and the sum plus one. So the compound adder is assumed to take

6 + 2 × dlogf−1(dn
f
e − 1)e FO4 delays. The final multiplexer to choose between the far and close

path adds one more FO4 delay.

A few details that must exist and are not mentioned in the published work increase the estimation

of the delay. Those are:

1. Post-normalization shifting: In case of a significand overflow there might be a need to shift the

result by one bit location. The select lines of the multiplexer performing such a shift depend

on the output of the adder. Hence, there is a delay from the select lines to the output equal

to dlog4(n)e + 1 FO4 delays.

2. Comparing the exponent difference to the number of bits of the operands: If the difference is

larger then the smaller operand is effectively reduced to zero and only affects the rounding. A

delay of one multiplexer to choose an all zeros pattern as a second input to the adder might

be required.

So, the variable latency adder has the following delay:

τV L = 18 + 2 × dlog4(n)e + dlog2(n)e

+ 2 × dlogf−1(d
expW

f
e − 1)e + 2 × dlogf−1(d

n

f
e − 1)e

This is the longest path of the adder. The other shorter ones that are exploited to allow the variable

latency feature are not taken into consideration for the comparison.

Reduced Latency adder [67]

The reduced latency adder (RL adder) has the exponent difference (11 bit), the swap and the operand

width alignment shift in the first cycle. In the second cycle, the operand width carry propagate adder

and some multiplexers fall on the critical path. Similar to the previous two designs, this design starts

as well with the exponent difference and the significand swap which take 5+2×dlogf−1(d expW
f

e−1)e
and dlog4(n)e+1 FO4 delays respectively. The shifter adds dlog2(n)e FO4 delays. The negation for

the case of subtraction takes one FO4 delay. The prefix adder produces several outputs that pass

through logic to set some fields in the case of an exception (zero, NaN, . . . ). This is assumed to

add one FO4 delay to that of the adder giving 6 + 2 × dlogf−1(dn
f
e − 1)e FO4 delays. Then, there

is a multiplexing stage to choose between the possible outcomes and a final multiplexer to choose

between the far and near path. This is assumed to add two more FO4 delays. The total delay for
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the RL adder is thus:

τRL = 15 + dlog4(n)e + dlog2(n)e

+ 2 × dlogf−1(d
expW

f
e − 1)e + 2 × dlogf−1(d

n

f
e − 1)e

Fast IEEE FP adder [71]

The critical path of the fast FP adder (fst adder) has two possibilities. The first is the 7 bit exponent

difference (not the full 11 bit), the bitwise XOR, the shifter and finally the multiplexer (from inputs

to output). This first option takes 5 + 2 × dlogf−1(d 7
f
e − 1)e + 1 + dlog2(n)e + 1 FO4 delays. The

second possibility is the full 11 bit difference, the bitwise XOR, the OR tree, the delay from select

lines to the output of the multiplexer. This latter option takes 5 + 2 × dlogf−1(d 11
f
e − 1)e + 1 +

dlogf (5)e+dlog4(n)e+1 FO4 delays. The second option is slightly longer and is the one used for the

delay calculations if the exponent width is assumed to be 11 bits. Obviously, if the exponent width

is only 8 bits then the first option (assuming that the whole exponent difference is evaluated by one

adder) is the one determining the critical path. The second cycle of this design starts with the half

adder and the compound adder which both add 7 + 2 × dlogf−1(dn
f
e − 1)e FO4 delays. The one

bit location shifters are multiplexers whose select line is one of the bits produced by the compound

adder, hence there is a delay of dlog4(n)e + 1 FO4 delays. The multiplexer used to choose between

the two shifter outputs adds just one more FO4 delay (the delay of its select line is in parallel with

the delay of the select line of the previous shifters). Finally, there is a multiplexer to choose between

the far and close path that adds one more FO4 delay. To summarize, the fst adder has the following

delay:

τfst,expW=11 = 17 + dlogf (5)e + 2 × dlog4(n)e

+ 2 × dlogf−1(d
11

f
e − 1)e + 2 × dlogf−1(d

n

f
e − 1)e

τfst,expW=8 = 17 + dlog4(n)e

+ 2 × dlogf−1(d
8

f
e − 1)e + 2 × dlogf−1(d

n

f
e − 1)e

4.3.2 Comparison results

Since the significand width and exponent width are closely related in the formats used for floating

point units, it is assumed here that the exponent width expW is eight bits for any significand width

that is 24 bits or less. Otherwise, expW is assumed to be 11 bits. For the proposed design using the

redundant digits, this translates to 11 bits with the small significand width and 15 bits otherwise.

This difference in the exponent width leads to a sudden jump in the time estimated for the delay at

the point where the significand width is 24. The assumption of such a step change is used instead
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Table 4.2: Effect of r on the relative improvement of the adder for n = 80.
f = 3 f = 4

r = 4 r = 8 r = 4 r = 8
RL adder 40 34
Proposed 35 36 33 34

Relative improvement 5/40 = 12.5% 10% 2.94% 0%

of a complex relation between the exponent width and significand width in order to simplify the

derivation of the delay estimates. Another simplification used is to ignore small increases in the

operand width (for example by one bit due to recoding in design1 ) along the critical path of the

design.

Figure 4.3 shows the time delay of the different designs when the significand width varies from

8 to 120 bits for different values of fan-in from f = 3 to f = 6. For the design proposed in this

thesis, r is kept constant at r = 8. When comparing all of the designs to the fully redundant “ideal”

pkt fwdThr, it is clear that the redundancy in the adder proposed in this work makes it the fastest

design for smaller fan-in values and large significand width. This is intuitively meaningful since

for large significand widths the other designs suffer from a long time delay due to the longer carry

propagation in the adders. In that same region of the design space, the RL adder seems to be the

second best.

As the fan-in increases, the long carry delays can be made better by using larger groups of bits

in the conditional-sum or carry-lookahead adders. Hence, the improvements in performance due to

the redundancy become less important and the overhead due to the larger significand size make the

design with redundancy less desirable as can be seen from the figure with f = 6. The overhead of

the redundancy is also negating its benefits for the case of small n.

In the proposed design, considering the dependence of the exponent width on the radix and the

other blocks (specially the shifter), the practical values for r should be multiples of 2. In order to

minimize the additional cost of the redundancy (register storage, extra hardware,. . . ) a large r is

desirable. However, increasing r reduces the redundancy available and increases the time delay.

In Fig. 4.4, a comparison is presented between having r = 4 and r = 8 with the fan-in being

either 3 or 4. Having a larger fan-in obviously improves the performance but it also decreases the

relative advantage of this design compared to the other conventional ones. To clarify this point

further, Table 4.2 compares the design proposed to that of the RL adder at n = 80 showing the

relative improvement and the effect of r on the improvement.

To summarize, the region where the proposed design seems to outperform the conventional

designs is when the fan-in is limited and the significand size is large (double precision and quad

precision for example). Using more redundancy improves the speed for the larger significands but

the price is a much larger area for the floating point adder and the register file. The limiting case
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Figure 4.4: Comparison between r = 4 and r = 8 at f = 3, 4.

of increasing the redundancy is the “ideal” variant of the pkt fwd adder design.

4.4 Simulation results

The implementation details of the adder and the circuit schematics are provided in appendix C.

From the schematics, a netlist of transistors representing the whole circuit as well as a complete

Verilog description is extracted. Verilog is used to verify correct functionality. Exhaustive testing of

the functionality is obviously not practical for such a design due to the large number of input bits.

A testing Verilog module was written to generate random test vectors and input them to the adder.

Manually checking the correctness of the output for random input test vectors proved to be a very

labor intensive task. However, over a hundred such test vectors were manually checked to debug the

complete design while exhaustive testing was done to the smaller components1.

The transistor netlist is used for the timing simulation using the switch level simulator irsim.

That timing simulation indicated the different gates and transistors that needed resizing to provide

a strong enough source for the large fanouts that exist in different location of the design. Since the

design is done in a scalable CMOS style, technology files ranging from 0.6µm down to 0.3µm are

used. On that range of scaling factors, the adder performs as predicted by the analytical model when

compared to the delay of FO4 inverters at the same scaling factor. For the timing simulation of

the adder, 5 000 test vectors as well as the assertions for the corresponding outputs were generated

1On the other hand, an automatic script was written to check the complete multiplier and it successfully passes

more than 2.4 million random test vectors as discussed in chapter 5.
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Table 4.3: Circuit statistics and simulation results for the floating point adder.
number of nodes 46 845
NMOS transistors 63 589
PMOS transistors 61 649
Test vectors 5 000
Model delay 34FO4
Simulation delay(0.6µm) 14ns = 33.35FO4
Simulation delay(0.3µm) 6ns = 32.40FO4

from the verilog simulator. Table 4.3 provides some of the circuit statistics as well as the simulation

results.

4.5 Adder conclusions

An adder for the redundant digit floating point system was proposed in this chapter. The two main

challenges appearing in this design were the leading digit detection and the rounding. Both of those

blocks were discussed and the possible alternatives in their design explored.

The comparison of the proposed adder with other work indicates that the proposed adder is

more suited for the large significand sizes and small fan-in technology. To verify the assertions

made about the speed advantage, a circuit with a specific significand width (corresponding to the

double precision), as well as a specific fan-in limitation and redundancy was implemented at the

transistor level. The simulation results of that implementation confirm the prediction from the

simpler analytical model.



Chapter 5

Multiplication unit

5.1 Conventional Multiplier designs and their time delays

Hand multiplication is a serial task where a digit of one operand (the multiplier) is multiplied by

the digits forming the other operand (the multiplicand) and the result is a partial product that is

written down before going to the next digit of the multiplier. The partial products are formed in this

serial fashion and are summed to deliver the final result. On the other hand, high speed multiplier

parallelize the task of generating the partial products by using extra hardware to handle all the

digits of the multiplier simultaneously. In addition, the summation of the partial products to form

the last result is broken into two steps: parallel reduction of the partial products to two numbers

and then the final summation of those two numbers.

In the case of binary numbers, the generation of the partial products is done easily using AND

gates. Such a simple scheme generates as many partial products as the number of bits in the

multiplier. To decrease the time it takes to sum them, Booth recoding of the multiplier is usually

employed to reduce the number of partial products generated. When more than two bits are used for

the recoding, some hard multiples are needed. The redundant Booth-3 [73] is a possible solution for

this problem. In this solution, redundancy is used inside the multiplier circuits while the operands to

the unit remain non-redundant. The Booth recoding adds some delay in the generation and reduces

the delay of the summation. Whether this is beneficial overall or not is a difficult question to answer.

It could be with no benefit at all in some cases as some researchers claim [74]. While others assert

that it saves between 11% and 50% of the delay [75]. A recent empirical study [76] indicated that

the answer depends on a variety of factors including the operand sizes and the type of topology used

to sum the partial products as well as the technology of implementation.

Partial product reduction in high speed multipliers is important as it is the piece of the multiplier

that consumes the most time and area. Hence different approaches have been used to optimize it.

46
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1. The reduction of the partial products is usually done by the use of an internal redundant

representation for the numbers.

(a) Even if the original operands are not redundant, three of the partial products are summed

to give a carry vector and a sum vector. This is a redundant representation of the sum

and constitutes a reduction of three product vectors to two (carry and sum) vectors.

Those latter two are combined with other vectors and the reduction ratio of three to two

continues. The reduction occurs by using a number of logic elements in parallel with each

reducing three input bits to two output bits. Each of those elements is called a (3, 2)

counter which is simply a full adder circuit that takes two inputs plus a carry to generate

a sum and a carry out bit. An alternative logic element is the [4 : 2] compressor [77, 12]

which adds four input bits plus a carry to produce two output bits and a carry and

achieves a reduction ratio of two to one.

(b) Other schemes of reduction use signed digits [35, 39, 34, 37].

2. The optimum placement and routing of the counters to reduce the partial products to the

final sum and carry was studied by several people [60, 78, 79]. The empirical study of Al-

Twaijry [76, 80] indicates the region of superiority for each of the topologies for partial product

reduction given the operand width and the technology used.

The final carry propagate adder in the high speed multipliers is characterized by the fact that

not all its inputs arrive at the same time and hence it is also optimized in a variety of ways [60].

However, it still accounts for almost 30% of the delay of the multiplier [73]. In the case of producing

a redundant output as in the system proposed in this work, this final adder is replaced by a signed

digit adder that is faster and simpler to design.

5.2 Proposed Multiplier design

Any design for a parallel floating point multiplier involves a number of functions to be performed.

Namely, unpacking the operands into the exponent and the significand parts, partial products gen-

eration using the significands, reduction of the partial products, final addition, normalization (if

needed) then packing the result back into the floating point format. Similar to the adder, in the

proposed system, the multiplier does not round the numbers at the end of the multiplication oper-

ation but rather at the start of the following operation. So, the rounding in this system can occur

either in the unpacking stage or in the partial product generation stage. These two choices are

not similar and some analysis is needed to determine the best approach. Another subtle difference

between the multiplier in the proposed system and the conventional multipliers is the fact that each

operand has a number of bits that are considered to have a negative value. These are the extra bits

in each digit of the number. The significands of the two operands X and Y are thus assumed to
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have three components: P the positively valued bits, E the negatively valued extra bits and r the

value of the rounding digit which is either positive or negative (i.e. r ∈ {−1, 0, 1} .) The end result

is X × Y but, X = Px − Ex + rx and Y = Py − Ey + ry and hence a number of possibilities for

the design is studied. Multiplying those two operands results in some partial products which are

positive and some which are negative. The two’s complement of each negative partial product can

be added to form the final result. Another approach is to have all these negative partial products

added separately first then complemented and summed with the positive ones. The generation of

the partial products can be done in different ways by breaking the operands into their sub-parts and

handling each one separately. This gives the following options (neglecting the rounding issue for a

moment)

1. X × Y directly

2. PxY − ExY

3. PxY − ExPy + ExEy

4. PxPy − PxEy − ExPy + ExEy

If Y is used as a direct multiplier (options 1, 2, 3) then a modified Booth recoding must be used

because of the extra bits which have a negative value. The involved logic recodes Y in a different

signed digit set that is minimally redundant. For radix-2k Booth (Booth k for short), the produced

digits are in the set {−2k/2, · · · , 2k/2}. Since Y is originally represented by a redundant set as well,

this is a case of conversion between two redundant sets. Such conversions are proven to take a fixed

amount of time independent on the operand size [29]. The specific case of Booth recoding of signed

binary (where each bit is signed) has been studied previously [48]. It was proven that each digit in

Booth k recoding is determined by 2k + 1 consecutive input signed bits. In the system proposed

here, only 2k bit locations are needed and the reason is that Y has mainly unsigned positive bits.

It is only the bit locations where the extra bits occur that are considered as “signed bits.” For

Booth 2 or 3 a truth table can be derived giving the output in each case. The fact that Booth

recoding produces correct results for multiplication has been proved in different ways in the research

literature [49, 47].

Each of the problems specific to the design at hand is explained in the following sections before

introducing the delay analysis and the simulation results.

5.2.1 First challenge: “Negative” bits and Booth recoding

Among the different implementation options for the multiplier mentioned above, option 4 requires

no extra modified recoders but the multiplication of PxEy involves a full width (but reduced height)

partial products array (PPA). This is saved by adding the recoders needed for options 2 and 3. This

seems to be a large hardware saving. There might be more latency if the recoders are on the critical
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path but still this is to some extent compensated by the fact that option 4 has more terms to add

up at the end which takes more time.

In a direct implementation of option 2 we have both positive and “negative” valued bits in the

ExY calculation. If we generate the partial products and add the positive separately from the

negative, this reduces to option 3.

Option 1 is the most desirable since it is the most compact. However, it introduces “negative”

valued bits into the PPA. Those can be summed separately and then subtracted from the positive

bits. Another solution is to use a scheme with bias similar to the one used in redundant Booth 3.

In a biased Booth system [73], the bias constant K has most of its bits with a value of 0 except

for a few with 1. In the redundant Booth 3, it has 1 in the locations where the carry bits occur.

So if, for example, 5 bit adders are used, the carries occur every 5 bits and the constant is K =

· · · 01000010000100000. The partially redundant form (after the addition of the bias constant) has

the additional bits at the location that is one bit higher than the locations of the bias constant.

Similarly, if a biased Booth scheme is used with the proposed system, then only one carry bit is

allowed as redundancy for each group of bits. This requirement means that the bias constant has 1

in the locations where the extra bits occur. Obviously, the location of the extra bit is not the same

in the multiple, X , and its double, 2X . Thus, the bias constant has 1 at the highest location of the

extra bit and a short addition occurs to find out the partially redundant form as shown in Table 5.1

for a Booth 2 system. In this table, e is the extra bit and it has a negative value as indicated by

the minus sign. The positive bits of X are a, b and c. For each case, the boolean expressions used

to drive the bits x, y and z of the result after adding the constant K are given. Other bit groups

have similar logic in them.

However, the interval between the extra bits is 4 which is a multiple of 2. This leads to the

accumulation of the additional bits of the partially redundant form at certain columns in the PPA.

A solution is to use Booth 3 instead with the interval remaining 4. In such a case, the constant has 1

in a location one bit higher than the example of the Booth 2 above to accommodate the 3X multiple.

It is necessary to add X and 2X to generate 3X and use additional gates to include the constant.

This design involves more delay in generating the K ± 3X multiples and can become complicated

for wiring.

So, this idea is not further considered. The proposed solution is to generate two bit vectors for

each partial product (PP). One of those is treated as a positive vector and the other as negative.

The positive vectors are summed together and the negative ones are summed together. At the end,

the difference between the two sums is calculated. If a Booth 2 recoding is used with this solution,

there is no need to worry about sign extension. To generate −X , one of two possibilities can be used.

The first is to select Ex for the positive vector and Px for the negative vector. The second possibility

is to negate X using SD addition in parallel with the recoding of Y by the Booth recoders. The

negative of X may be called mX as a short notation for minus X and is composed of Pmx and Emx
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Table 5.1: Biased Booth 2.

K + X · · ·a b c · · · x = e ⊕ c
1 −e y = b ⊕ (e + c)

· · ·a y x · · · z = b(e + c)
z

K − X · · ·a b c · · · x = e ⊕ c
1 e y = b ⊕ (ec)

· · ·a y x · · · z = b + ec
z

K + 2X · · · b c d · · · x = d
1 − e y = c ⊕ e

· · · b y x · · · z = ce
z

K − 2X · · · b c d · · · x = d
1 + e y = c ⊕ e

· · · b y x · · · z = c + e
z

which is used when −X is needed. The double of the multiple is simply a one bit left shifted version

of the multiple and similarly for the negative of the double (shifted version of −X). There is no

need for any sign extension if one of these two possibilities is implemented. The second possibility

(producing mX) is what is used in the implementation presented here.

At the end of the partial products reduction, the negative sum is subtracted from the positive

sum. The combination of those last four bit vectors can be done in two ways:

1. The two positive PP’s and the two negative PP’s are assumed as forming only two numbers

with signed digits. Each signed digit is represented by two bits one from a positive vector

and one from a negative vector. Those two signed numbers can be summed and the result

produced in the proposed format.

2. The negative PP’s are complemented and a row of [4 : 2] compressors is used to reduce the

four PP’s to only two. Then these last two are used to produce the proposed format.

In the first possibility, each 4 bits range from −15 (all ones in the negative PP and all zeros in

the positive PP) to +15 ( the opposite case). So, they are in the same range as the digits in the

proposed format but they are in a different encoding. A special adder can be designed to add these

two signed numbers using SD addition rules and produce the result in the required format.

Basically, each signed binary position has a primary sum in {−2,−1, 0, 1, 2}. However, the final

sum bit can only be in {0, 1} except for the MSB of the sum (the sign bit of the two’s complement)
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which can be in {0,−1}. A system of internal negative carries—alternately named: borrows—is

thus required to fulfill this function. If the primary sum of a position is already −2 and a borrow

is needed from it then its value becomes −3. This −3 is handled by generating a sum of 1 and a

carry of −1 to the position that is two bits higher (i.e. −3 = −4 + 1). That position that is two

bits higher could then have two carries coming to it. One from the position directly below it and

another from the position two bits lower. This is the maximum number of carries to any position.

In the second possibility, each bit of the negative PP’s is complemented. A constant equal to 2

must be added in the reduction tree to make this complementation equivalent to a two’s complement.

Then those two are added to the positive PP’s using [4 : 2] compressors. The result is two PP’s

in two’s complement form. It is important to note that when the negative PP’s are complemented,

they are signed extended by one bit. The corresponding bits in the positive PP’s are filled with

0’s. The resulting PP’s after the [4 : 2] compression can be either negative or positive. However,

they cannot be both negative since the final result must be positive (both of the significands being

multiplied are positive). The two numbers are divided into groups of 4 bits to be added as if they

are SD numbers. In all the digits, the design of the SD adder implemented in the floating point

adder can be used. A factor that simplifies its design here even further is that all its input digits are

positive except for the MSD which might be negative. So, in all the digit locations, (xi + yi) and

(xi +yi +1) are pre-calculated together with ci(1). There is no need to calculate ci(−1) or (xi +yi−1)

since a negative carry is never produced. The same is true for the MSD location (where negative

digits can occur) since the end result must be positive.

From a delay point of view, the two possibilities seem to be comparable. However, from an ease

of implementation and simplicity point of view, the second possibility appears to be superior and

was selected for the multiplier in Fig. 5.1.

Booth recoding

A few multiplier designs deal with the issue of having a redundant input operand [33]. As noted

above, in those designs a need arises for modifying the Booth recoders. With Booth recoding, the

extra bit (which has a negative value) can fall under either of the bits being considered by the

recoder. This bit has then a value of 0,−1,−2, · · ·. Each k bit locations in a Booth k system is

recoded as having a new value and a “carry out.” Those two are based on the original value, the

extra bit, and the “carry in.” Obviously, the carry out is dependent only on the group of bits

being considered —together with any extra bits it may contain— but independent of the carry into

that group. Otherwise, there is a carry propagation problem and the conversion does not occur in

parallel.

Tables 5.2 and 5.3 indicate the possible recoding schemes for Booth 2 and Booth 3. Similar tables

can be developed for other Booth systems. The column with the extra bit equal to zero is the same

as the conventional Booth recoders. It is important to note that these tables are not unique but
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Figure 5.1: Conceptual block diagram of the multiplier.
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Table 5.2: Booth 2 recoding with the extra bit.
extra = 0 extra = -1 extra = -2

b2 b1 ci v co v co v co

0 0 0 0 0 -1 0 -2 0
0 0 1 1 0 -0 0 -1 0
0 1 0 1 0 0 0 -1 0
0 1 1 2 0 1 0 -0 0
1 0 0 -2 1 1 0 0 0
1 0 1 -1 1 2 0 1 0
1 1 0 -1 1 -2 1 1 0
1 1 1 -0 1 -1 1 2 0

other possibilities for the recoding exist. As an example, for the last line in Table 5.2 and the case

of extra bit equal to −2, the value can be recoded as v = −2 and co = 1. However, the tables where

chosen to have the least amount of carry propagation possible. This also gives a useful property,

namely, the column giving v is rotated by two times the amount of the extra bit when compared to

conventional recoders. This helps a designer to check the correctness of the table derived for any

Booth k.

Obviously in the system at hand, if Booth 3 is to be used, it must be some sort of a redundant

Booth 3. Otherwise, the delay and area of the adder used to get the precise three times multiple

overshadows the benefits gained from eliminating the carry propagation adder at the end. The

chosen option for the multiplication (regardless of the Booth recoding) is already redundant. It

has each multiple represented by two vectors, one positive and one negative. If the 3M multiple

required for Booth 3 is made available in such a form, then the multiplication is easily done. In fact,

3X = 2X +X = 2Px +Px − (2Ex +Ex). Since Ex is a sparse vector with a gap of three 0’s between

each two bits, the 2Ex+Ex = 3Ex part can be formed just by repeating the extra bits in one location

higher. A row of full adders is used to add Px, 2Px (a shifted version) and the complement of the

vector 3Ex. The bit by bit complement of 3Ex is only the one’s complement but it must be made

two’s complement. Hence a 1 is added in the LSB (empty location) of the 2PX vector. The row of

full adders compresses the three vectors into two. Since X is known to be positive, then 3X must

be positive as well. Among the three vectors that are added, two are positive and one is negative.

For compatibility with the rest of the multiplier, one of the resulting two vectors should be positive

and the other negative. The following Lemma proves that this is indeed the case.

Lemma 5.2.1 If a row of full adders is used to sum three binary vectors represented in two’s

complement form with any two vectors being non-negative (positive or zero) while the third vector is

stricly negative then the result is two vectors having opposite signs.

Proof: Let us assume that the two non-negative vectors are labeled P and Q and that they have
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Table 5.3: Booth 3 recoding with the extra bit.
extra = 0 extra = -1 extra = -2 extra = -4

b4 b2 b1 ci v co v co v co v co

0 0 0 0 0 0 -1 0 -2 0 -4 0
0 0 0 1 1 0 -0 0 -1 0 -3 0
0 0 1 0 1 0 0 0 -1 0 -3 0
0 0 1 1 2 0 1 0 -0 0 -2 0
0 1 0 0 2 0 1 0 0 0 -2 0
0 1 0 1 3 0 2 0 1 0 -1 0
0 1 1 0 3 0 2 0 1 0 -1 0
0 1 1 1 4 0 3 0 2 0 -0 0
1 0 0 0 -4 1 3 0 2 0 0 0
1 0 0 1 -3 1 4 0 3 0 1 0
1 0 1 0 -3 1 -4 1 3 0 1 0
1 0 1 1 -2 1 -3 1 4 0 2 0
1 1 0 0 -2 1 -3 1 -4 1 2 0
1 1 0 1 -1 1 -2 1 -3 1 3 0
1 1 1 0 -1 1 -2 1 -3 1 3 0
1 1 1 1 -0 1 -1 1 -2 1 4 0

n bits with the MSB Pn−1 = Qn−1 = 0. Similarly the negative vector is R with Rn−1 = 1. The

results are in two’s complement form given by S the vector of the sum bits generated from the full

adders and T the vector of the carry bits. S has the same number of bits as the added vectors and

T is one bit longer with Si = Pi ⊕ Qi ⊕ Ri, Ti+1 = PiQi + PiRi + QiRi and T0 = 0. From these

relations, it is clear that Sn−1 = 1 and Tn = 0 which means that S is negative and T is positive.�
In the system discussed here, Px extended by a 0 at the MSB side becomes P , 2Px padded with

a 1 at the LSB side becomes Q and the one’s complement of 3Ex becomes R. Since −3Ex ≤ 0

then if R is interpreted as representing a two’s complement number as in the Lemma it is indeed a

strictly negative number. The conditions for the Lemma are thus satisfied. The resulting positive

vector is used directly. The resulting negative vector, however, requires a small change to suit the

multiplier scheme discussed above. The second vector in each partial product has an absolute value

which is considered to be indicating a negative number. Hence, two’s complementation is needed to

get the absolute value of the negative vector resulting from the full adders. This can be achieved

by bit complementation and the 1 needed to make it two’s complement is inserted in the following

partial product as is done in conventional multipliers with Booth recoding.

Other ways for preparing the 3X multiple can be devised as well.1 However, the modified

recoders for a Booth 3 system are larger and slower than those of the Booth 2 as can be derived

1For example, using SD addition rules to add X and 2Px and then insert 2Ex in the negative vector. This can be

even done in parallel with the rounding step.
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from Tables 5.2 and 5.3. It was also shown [76] that, in general, Booth 2 is the recoding scheme

which minimizes the latency of a multiplier when technology scaling is taken into account. For this

reason a Booth 2 recoding is used in the design presented here.

For the multiplier operand Y , Table 5.2 is used to implement a Booth 2 recoding scheme. Since

the gap between the extra bits is 4, then in a Booth 2 scheme the extra bits always fall under the

bit b1 of Table 5.2. Let us denote it by e1. The possible values for the extra bit are thus only 0 or

−1 and the boolean expression giving the possible outputs become:

(0) = e1b2b1ci + e1b2b1ci

(1) = e1b2(b1 ⊕ ci) + e1(b2b1ci + b2b1ci)

(2) = e1b2b1ci + e1b2b1ci

(−0) = e1b2b1ci + e1b2b1ci

(−1) = e1b2(b1 ⊕ ci) + e1(b2b1ci + b2b1ci)

(−2) = e1b2b1ci + e1b2b1ci

co = b2(e1 + b1)

It is important to note that in 2Y , the extra bits always fall under b2. Since the last column of

Table 5.2 has always 0 as a value for co, then boolean expressions derived in such a case could be

simpler. In fact, if the extra bit always falls under b2 (with a value of either 0 or −2) and is denoted

by e2 then the boolean expressions become:

(0) = e2b2b1ci + e2b2b1ci

(1) = e2b2(b1 ⊕ ci) + e2b2(b1 ⊕ ci)

(2) = e2b2b1ci + e2b2b1ci

(−0) = e2b2b1ci + e2b2b1ci

(−1) = e2b2(b1 ⊕ ci) + e2b2(b1 ⊕ ci)

(−2) = e2b2b1ci + e2b2b1ci

co = e2b2

These expressions are indeed simpler. In order to use them the multiplication is assumed to be

(X × 2Y )/2. The doubling of Y is a simple left shift by one. The result of X × 2Y must end with

a zero as its least significant bit. This bit is dropped and the rest of the result taken to achieve the

division by two needed at the end. Another way to look at this is to assume that the Booth recoding
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is done to the operand Y when its digits are divided as:

· · · py7 py6 py5 py4 py3 py2 py1 py0

ey0

with the low order bit not recoded but multiplied separately. This assumption is what is implemented

and, in fact, it is more than just the LSB that is treated separately. The whole least significant digit

is handled in a special manner due to rounding.

Fig. 5.2 shows the schematic of the circuits used for Booth 2 recoding. The generation of co in

the cell dealing with the extra bit takes two gate delays and then this signal is fed into the following

regular Booth recoder as its ci. That ci affects the outputs of the recoder after two more gate

delays. Hence, the longest path in the Booth recoding scheme presented is estimated to be 4 FO4

gate delays.

5.2.2 Second challenge: When to round

Similar to the case of the floating point adder, rounding in the presented floating point multiplier

proved to be a challenge. The operands can be rounded first and then the rounded significands used

to perform the multiplication. This puts the rounding logic on the critical path of the multiplier and

delays the start of the partial products reduction. A second possibility is to start the multiplication

of the (Px − Ex) and (Py − Ey) parts while, simultaneously, generating additional partial products

with the values ry(Px −Ex), rx(Py −Ey) and rxry. In this second case, the reduction of the partial

products starts directly but it takes more hardware because of the added partial products.

Using the parametric delay model of chapter 3, we can evaluate both possibilities. In the first

possibility, the rounding is done first before generating the partial products. The delay for this is

estimated to be dlogf (r)e+dlogf (dn/re)e for the determination of the signed sticky digit (to generate

the inputs of and get through with Fig. B.2) followed by 2 FO4 delays for the multiplexers selecting

the carries out of the least significant digit (see Fig. B.1) and then a delay of dlog4(r + 1)e + 1 for

the multiplexer selecting the next higher digit. With n = 54, f = 3 and r = 4 the time delay for

rounding in this case is estimated to be 10 FO4. In comparison, if a tree of [4 : 2] compressors is

used for the partial products reduction then it has (dlog2(dn/re)e−1) levels with each taking 3 FO4

gate delays. That tree when n = 54 gives a delay of 12 FO4 gate delays. Obviously, rounding first

without any other parallel work done on the significands is unacceptable if a high speed multiplier

is required.

The other possibility is then to chop both X and Y at the rounding location. As mentioned in

the discussion on rounding in section 4.2.2, this location is determined by the leading bit of the MSD

and the signed sticky digit. The operand chopping takes away all the bits below the approximate

rounding location determined only by the leading bit of the MSD. The multiplication is carried as

(Xchopped+(bx+rx))(Ych+(by +ry)) where bx and by are the bits directly after the rounding location
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Figure 5.2: The building block of the Booth 2 recoding.
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in case the signed sticky indicates a negative fractional value while rx and ry are the rounding digits.

Hence the multiplication can be divided into three parts:

X × Y = XchoppedYchopped By Booth recoding, generating partial

products and summing

+(bx + rx)Ychopped + (by + ry)Xchopped 2 special partial products added in the tree

+(bx + rx)(by + ry) special correction added to the tree

The derivation of the logic equations for those corrections as well as the circuits implementing

them are presented in appendix B.

5.3 Multiplier delay analysis and comparisons

Two different paths affect the generation of the partial products: the preparation of mX (the negative

of X) and the recoding of Y . Once the pre-processing ends (Y is recoded, X is chopped and mX is

available), the generation of each partial product is done via a row of multiplexers whose select lines

are the recoded Y digits. The number of multiplexers in each row is approximately dn
r
e × (r + 2).

Although the width of the operands is estimated to be dn
r
e×(r+1)−1 the estimation of the number

of multiplexers in the each row uses (r+2) and not (r+1) since in the case of choosing the double of

X the extra bit is shifted by one location. The partial products are then reduced by a tree of [4 : 2]

compressors. Because of the Booth recoding, the number of partial products is dn
2 e. As discussed in

the rounding section above, three correction vectors are added to the partial products. The number

of levels in the tree to reduce the product to two bit vectors is estimated as dlog2(dn
2 e + 3)e − 1.

Following that is the compressor combining the positive and negative sum then the SD adder.

It takes 4 FO4 gate delays to negate a digit as shown in Fig. 5.3. Both X and mX must be

buffered to supply the dn/2e rows of multiplexers. The buffering delay is thus dlog4dn/2ee. Hence

the total delay to generate and buffer mX is estimated to be 4 + dlog4dn/2ee. One more gate delay

is needed to get the output of the partial product multiplexer which puts the total delay according

to this path starting with X at 5 + dlog4dn
2 ee.

The delay of the Booth recoder is 4 FO4 gate delays as mentioned in section 5.2.1. The outputs

of the recoders are used as select lines for the row of dn
r
e × (r + 2) multiplexers and the time delay

to the output is then dlog4(dn
r
e× (r + 2))e+ 1. The total time delay to get the output of the partial

product multiplexer according to this path is thus 5 + dlog4(dn
r
e× (r + 2))e which is larger than the

path from X described above.

Each of the compressors in the tree as well as the one after the tree takes 3 FO4 gate delays

resulting in 3(dlog2(dn
2 e + 3)e − 1) + 3 = 3dlog2(dn

2 e + 3)e FO4 gate delays. The SD adder used

here is much simpler than the one used in the floating point adder. In fact, it is similar to a number

of regular adders in parallel each of them dealing with only (r + 1) bits. Hence, its time delay
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Figure 5.3: Producing the negative of one digit.



CHAPTER 5. MULTIPLICATION UNIT 60

is the same as a regular adder with just one extra FO4 delay added to it to accommodate for

choosing between the sum and sum plus one. The time delay of that adder is then estimated to be

6 + 2 × dlogf−1(d r+1
f

e − 1)e. The select lines of the normalization shifter at the end depend on the

outputs from the adder and hence it adds an estimated delay of dlog4(dn
r
e × (r + 1)− 1)e + 1. The

total delay of the multiplier is then estimated to be:

τmul = 12

+ dlog4(d
n

r
e × (r + 2))e

+ 3dlog2(d
n

2
e + 3)e

+ 2 × dlogf−1(d
r + 1

f
e − 1)e

+ dlog4(d
n

r
e × (r + 1) − 1)e

The effect of the fan-in limit f of the gates is minimal in this design. It only appears in the third

line of the equation above. In fact, for the practical values of f = 3, 4 and r = 4, 8, the third line

evaluates to zero and the change of f has no effect.

5.3.1 Conventional systems

Conventional systems vary widely in their use of Booth recoding and in the topology used to reduce

the partial products. As the recent empirical study [76] showed these choices can have a big effect

on the time delay and area. As a comparison, a conventional system using Booth 2 and a tree of

[4 : 2] compressors with a final carry propagate adder is assumed here.

As shown in Fig. 5.2, the regular Booth recoding takes 2 FO4 gate delays. To drive the partial

product multiplexers and get to their output, dlog4(n)e+ 1 FO4 gate delays are needed. Similar to

above, the compressors in the tree take 3 gate delays each resulting in 3(dlog2dn
2 ee − 1) FO4 gate

delays. Since the multiplier produces a result that is double the size of the operand but in the case

of the floating point numbers only the most significant half is kept, the final adder is assumed to be

only n bits wide. The delay of that adder is then 5 + 2 × dlogf−1(dn
f
e − 1)e FO4 gate delays. The

normalization multiplexer adds another dlog4(n)e + 1 FO4 gate delays. The total time delay for a

conventional multiplier is then:

τcon = 6 + dlog4(n)e + 3(dlog2d
n

2
ee)

+ 2 × dlogf−1(d
n

f
e − 1)e + dlog4(n)e
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Table 5.4: Effect of r on the relative improvement of the multiplier for n = 80.
f = 3 f = 4

r = 4 r = 8 r = 4 r = 8
Conventional 42 38

Proposed 38 40 38 40
Relative improvement 4/42 = 9.5% 4.8% 0% −5.3%

5.3.2 Comparison results

Fig. 5.4 illustrates the comparison between the multiplier proposed in this work and the conventional

multipliers. As indicated above, when f is increased the proposed design does not benefit from it

while the conventional design is speeded up since the final carry propagate adder gets faster.

The sudden steps in the plots are due to the ceiling function used in the estimation of the time

delays.

The same general conclusions regarding the floating point adder apply here as well. The proposed

design is good when the significand width is large. As the fan-in increases, the proposed design loses

its attractiveness. Smaller r indicates higher redundancy which decreases the time delay. Table 5.4

compares the design proposed to a conventional one at n = 80 showing the relative improvement

and the effect of r on the improvement.

When comparing the time delay equations, we find that the improvement brought by the use of

the faster SD adder are offset to some extent by the slower Booth recoder and the need to sum the

negative and positive partial products using an extra [4 : 2] compressor.

5.4 Simulation results

Similar to the floating point adder, a netlist of transistors representing the whole multiplier circuit

as well as a complete Verilog description are extracted from the schematics. Those schematics and

the implementation details are presented in appendix D.

An automatic script was written to check the Verilog description of the multiplier. The script

generates a clock signal driving two modules, one for generating the stimulus of the multiplier and

one for checking its outputs. The stimulus generation module generates two random inputs as

operands. Those inputs are checked to make sure that operands fit the required conditions:

• No digit should have an extra negative bit of 1 while the corresponding positive bits being all

zero. This insures that no digit of value −16 is used.

• If the MSD is randomly selected to be zero it is set to 1 to insure that the numbers are

normalized.
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• The design assumes that the MSD is similar to any other digit and has an extra negative bit.

This must always be set to zero to insure that the MSD is positive as required by the format

of the proposed system. The Verilog module generating the inputs does just that.

• if the MSD is equal to 1, the adjacent lower digit must be positive. Hence, its extra bit is set

to zero in the case of an MSD equal to 1.

• In the digit for the guard, round and sticky, if the random number is chosen so that the guard

digit is equal to −2 and the round bit is equal to 0 then the sticky digit is set to 01 to insure

that the fractional range at the least significant bit of the LSD is bounded between −1 and 1

as mentioned in appendix B.

Once the rounding mode and the sign of each operand are chosen all these signals are supplied to

the floating point multiplier.

The outputs of the multiplier are checked by the checking module. That checking module starts

by calculating the rounded non-redundant representation of both operands and multiplying them

together. That product is then checked for the different possibilities of normalization and is shifted

accordingly and truncated at the rounding position to give a value named XtimesY-trunc. The

sticky digit is calculated from the truncated part and is padded to XtimesY-trunc. At the same

time, the non-redundant (but not rounded) representation of the output from the multiplier is also

calculated. This representation is then compared to the XtimesY-trunc. If they match the result is

correct.

This checking mechanism as well as similar ones for the smaller components enabled the discovery

of several mistakes along the way of the design. The checking for the complete multiplier was left

to run for a couple of weeks and the multiplier successfully passes more than 2.4 million random

test vectors. Although this number constitutes a very small portion of the test vector space, it still

gives a level of confidence in the algorithm and implementation. Since a formal proof of correctness

is beyond the scope of the current work the focus shifted to the speed once this confidence was

achieved.

Similar to the floating point adder, the timing simulation helped to indicate the gates and transis-

tors that needed resizing. On the range of scaling factors from 0.6µm down to 0.3µm the multiplier

performs as predicted by the analytical model when compared to the delay of FO4 inverters at the

same scaling factor. The Verilog simulator was used to generate the test vectors for the timing

simulation. In total, 10 000 test vectors as well as the assertions for the corresponding outputs were

generated. The simulation results as well as some of the circuit statistics are given in Table 5.5.
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Table 5.5: Circuit statistics and simulation results for the floating point multiplier.
number of nodes 76 523
NMOS transistors 104 695
PMOS transistors 105 037
Test vectors 10 000
Model delay 35FO4
Simulation delay(0.6µm) 14.8ns = 35.25FO4
Simulation delay(0.3µm) 6.4ns = 34.60FO4

5.5 Multiplier conclusions

The multiplier proposed in this chapter together with the floating point adder presented in the

previous chapter constitute the fundamental blocks for a floating point unit using the proposed

redundant format.

The comparison of the proposed multiplier with the conventional multiplier is consistant with the

adder comparison. The design is better suited for the large significand sizes and technologies where

the fan-in is limited. The relative gain from the proposed multiplier over conventional multipliers is

not as large as the relative gain in the case of the adder.

To verify the assertions made about the speed advantage, a circuit with a specific significand

width (corresponding to the double precision), as well as a specific fan-in limitation and redundancy

was implemented. The simulation results confirm the prediction based on the simpler analytical

model.



Chapter 6

Division and elementary functions

unit

6.1 Conventional Divider designs and their time delays

The integer division operation is defined as the function resulting in the quotient Q and remainder

R from the dividend N and divisor D using the following equation:

N = QD + R

This is one equation having two unknowns and would yield an infinite number of solutions if there

is no other condition set. The conditions chosen usually involve the magnitude of Q and the range

of R. A few examples are: [17]

1. Modulus division is when 0 ≤ R < D

2. Signed division is when the magnitude of Q is independent of the signs of N and D.

3. Floor division is when Q is the greatest integer (note that −3 > −4) that is contained by N/D.

On the other hand, for floating point numbers, the IEEE standard separates between the defini-

tions of the division and the remainder operation. For division, the standard defines the sign of the

quotient as the exclusive or of the operands’ signs. The quotient is defined as the rounded version

of the infinitely precise result. Depending on the rounding mode, the quotient may be more or less

than the infinitely precise result.

On the other hand, the remainder is defined regardless of the rounding mode by the mathematical

relation R = N −D×n where n is the integer nearest to the exact value of N/D. If | n−N/D |= 1/2

65
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then n is chosen to be even. Thus the remainder is always exact. If R = 0, its sign is defined to be

that of N .

Floating point division is accomplished in hardware by an algorithm belonging to one of three

general classes: table lookup, subtractive or multiplicative [27, 9, 1].

Table lookup: A direct table lookup method might use the dividend and divisor bits as address

lines for a ROM storing the values of the quotient. Obviously, this is only feasible for very

short significands. If each exceeds 10 bits or so, the table size becomes intolerable. A simple

variation is to use the lookup table to find the reciprocal of the divisor and then multiply it by

the dividend. That variation allows for larger significands but the size of the table becomes a

limit quickly since it grows exponentially with the size of its input. More variations result in

indirect table lookup methods where there is some processing of the numbers before and after

the table lookup. The interpolation table method and the bipartite table method fall in this

category. The advantage of table lookup is their speed since there is almost no computation

time needed and the indirect methods make table lookup techniques feasible for IEEE single

precision numbers. However, the table size is prohibitively large for longer significands. Table

lookups can still be used for double and quad precision numbers as a starting approximation

that is refined by another method (usually a multiplicative technique.)

Subtractive: This class is also called digit recurrence algorithms because the techniques used are

iterative based on digit addition, subtraction and shifting. It includes the restoring and non-

restoring division, SRT division, the CORDIC algorithm, continued fractions algorithms and

very high radix techniques. This class of algorithms produces a remainder as a by product of

the quotient computation. Hence, exact rounding is easy to implement. Since these techniques

iterate on the digits of the divisor, the convergence to the required quotient precision is linear.

With the exception of the very high radix techniques, this class is only suited for short precision

operations because of the linear conversion. If used with large significands it produces a slow

result only acceptable in low or medium performance hardware. The very high radix techniques

can be used with large significands but they are not a match in speed to the multiplicative

algorithms.

Multiplicative: Those include polynomial approximation, rational approximation, the division by

repeated multiplication and the division by reciprocation. The reciprocation techniques can

be further divided into series expansion and Newton-Raphson method. The convergence of

this class is at least quadratic with the number of bits of precision doubling every iteration. If

a higher order version of an algorithm such as the Newton-Raphson is used the convergence is

even faster. This class is the best suited for high speed dividers dealing with large significands.

The disadvantage of this class is the fact that the remainder is not produced as a by product

and exact rounding is a bit more complicated.
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6.2 Conventional elementary functions units and their time

delays

Elementary functions are the exponential, logarithm, trigonometric, inverse trigonometric, hyper-

bolic and inverse hyperbolic functions. For the sake of this work, we add to this group the square

root function.

These are all functions of one operand. Table lookup methods are thus attractive if the precision

of the operand is small. For larger operand sizes, the CORDIC algorithm has been used extensively

for evaluating the elementary functions in scientific calculators and medium performance arithmetic

coprocessors. Since CORDIC is a linearly converging slow algorithm, it does not lend itself to high

speed hardware. For that latter category, polynomial and rational approximations can be used as

well as series expansion and Newton-Raphson methods.

6.3 Proposed Divider and elementary functions unit

To perform division and other elementary functions, a design from the literature is adapted [1, 2].

This arithmetic unit (shown in Fig. 6.1) provides rapid convergence based on higher-order Newton-

Raphson and series expansion techniques.

Division is done by finding the reciprocal first and then multiplying the dividend by the reciprocal

of the divisor. When using a fourth-order Newton-Raphson iteration, the reciprocal of a number b

is given by
1

b
= x0(1 + d + d2 + d3 + d4)

where x0 is the approximate reciprocal found by a small lookup table and d = (1 − bx0). If the

number of bits in b is n and the order of the iteration is k (which is four in the equation above)

then the n
k+1 most significant bits of b can be used to access the lookup table and produce x0.

This approximation of the reciprocal is approximately n
k+1 bits wide and is then used to calculate

(1 − bx0) as shown in the figure. The number of bits used to access the table and the number of

bits produced by the table can be optimized to reduce the table size without sacrificing the required

reciprocal error bound for exact rounding [1]. The arithmetic unit achieves fast computation by

using parallel squaring, cubing, and powering units. These units compute the higher-order terms

significantly faster than the traditional approach of serial multipliers. In effect, these powering units

are even simpler than regular multipliers and produce their results faster [81]. All of the terms are

computed in parallel and their results are left in carry save form further reducing the latency.

This same architecture can be used to compute the square root and inverse square root if two

more lookup tables are provided to produce the approximations y0 = 1/
√

b and z0 =
√

b. Then,
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Figure 6.1: Division and elementary functions unit [1, 2].
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using the same d,
√

b and 1√
b

are calculated by the equations:

√
b = y0(1 − 1

2
d − 1

8
d2 − 1

16
d3 − 15

128
d4)

1√
b

= z0(1 +
1

2
d +

3

8
d2 +

5

16
d3 +

35

128
d4)

The outputs of the powering units are kept in carry-save form and pass through a row of multi-

plexers to select the correct coefficient depending on the function implemented. This selection of

the coefficient is done by appropriately shifting and adding the corresponding power of d without

requiring any further multiplications. All the powers are then summed together and multiplied by

either ax0 to give a
b

or y0 to give
√

b or z0 to give 1√
b
. If other lookup tables are provided more

functions can be evaluated.

This architecture can be pipelined and hence it provides a fast and efficient function evaluation

while allowing high-throughput.

To adapt this architecture to the format proposed here, a short adder is used to eliminate the

redundancy from the most significant part of the divisor operand by subtracting the extra bits.

This non-redundant part is used to access the lookup table while the rest of the operand is fully

transformed into a non-redundant form. In parallel, another adder is used to convert the dividend

into a non-redundant form as well. The unit then works on those two operands as in the original

design. To enhance the speed, the sum of the (1 − bx0)
i terms is kept in carry save form. Finally,

in the last multiplier, a signed digit adder is used instead of the regular carry propagate adder.

6.4 Delay analysis and comparison

The critical path of the adapted unit starts with an adder eliminating the redundancy of the most

significant n
k+1 bits. This adder has a delay of 5 + 2 × dlogf−1(d n

f(k+1)e − 1)e FO4 gate delays. A

lookup table with L input lines has a time delay of [17]:

Lookup table delay = 2 + dlogf (
L

2
)e + dlogf (2

L
2 )e

Hence, if n
k+1 bits are used to access the table the time delay associated with it is 2+dlogf ( n

2(k+1) )e+
dlogf (2

n
2(k+1) )e. The result of the table is also n

k+1 bits wide. This first approximation x0 is used in

a small multiplier to generate (1 − bx0).

Since x0 has a small number of bits, no Booth recoding is used but rather the partial products

are generated directly using AND gates then a tree of [4 : 2] compressors is used to reduce them to

two bit vectors. The tree has (dlog2(
n

k+1 )e − 1) levels. A carry propagate adder is used to add the

two bit vectors and generate (1 − bx0). That adder has a delay of 5 + 2 × dlogf−1(dn
f
e − 1)e FO4
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gate delays. So far, the delay of the unit is:

5 + 2 + 1 + 5 + 2 × dlogf−1(d
n

f(k + 1)
e − 1)e

+ dlogf (
n

2(k + 1)
)e + dlogf (2

n
2(k+1) )e

+ 3 × (dlog2(
n

k + 1
)e − 1) + 2 × dlogf−1(d

n

f
e − 1)e

According to Liddicoat [1], the squaring unit for a number with n bits has (bn
2 c + 1) partial

products. The time delay for the squaring unit is thus equal to one FO4 gate to generate the partial

products and 3× (dlog2(bn
2 c+1)e− 1) FO4 gate delays to reduce them. Simultaneously, the cubing

and higher order units produce their results. The multiplexers selecting the weights add one more

FO4 delay. A tree of [4 : 2] compressors is used to sum and reduce the results of the powering units

to two bit vectors. There is at most 2k − 1 vectors since the original (1 − bx0) term is not in carry

save form. Hence the summing tree has (dlog2(2k − 1)e − 1) levels.

The result of the branch calculating ax0 is forwarded to a Booth recoder in the last multiplier.

Less constraints exist on this path and the output of the Booth recoder is ready before the time

the summation of the powering units results is done. The Booth 2 recoding reduces the number of

partial products to dn
2 e. This compensates for the full redundancy (carry save form) of the sum of

the powering units. Hence the actual number of partial products is estimated to be n. It takes one

FO4 gate delay to select the appropriate partial product depending on the Booth recoding output

then reduction tree is composed of (dlog2(n)e − 1) levels. Finally, the signed digit adder increases

the delay by 8 + 2 × dlogf−1(d r+1
f

e − 1)e + dlog4(r + 1)e. The total time delay of the unit is:

τdiv,elem = 13 + 2 × dlogf−1(d
n

f(k + 1)
e − 1)e

+ dlogf (
n

2(k + 1)
)e + dlogf (2

n
2(k+1) )e

+ 3 × (dlog2(
n

k + 1
)e − 1) + 2 × dlogf−1(d

n

f
e − 1)e

+ 1 + 3 × (dlog2(b
n

2
c + 1)e − 1)

+ 1 + 3 × (dlog2(2k − 1)e − 1)

+ 1 + 3 × (dlog2(n)e − 1)

+ 8 + 2 × dlogf−1(d
r + 1

f
e − 1)e + dlog4(r + 1)e

τdiv,elem = 12 + dlogf (
n

2(k + 1)
)e + dlogf (2

n
2(k+1) )e + 2 × dlogf−1(d

n

f
e − 1)e

+ 3 × (dlog2(
n

k + 1
)e + dlog2(b

n

2
c + 1)e + dlog2(2k − 1)e + dlog2(n)e)

+ 2 × (dlogf−1(d
n

f(k + 1)
e − 1)e + dlogf−1(d

r + 1

f
e − 1)e) + dlog4(r + 1)e
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Table 6.1: Effect of r on the relative improvement of the division and elementary functions unit for
n = 80.

f = 3 f = 4
r = 4 r = 8 r = 4 r = 8

Original 101 87
Proposed 95 97 85 87

Relative improvement 6/101 = 5.94% 3.96% 2.3% 0%

The original unit does not have the extra adder that is used to eliminate the redundancy at the

start. It has a comple carry propagate adder to sum the outputs of the powering units and hence the

number of the partial products in the final multiplier is half what it is in our proposed adaptation.

Finally, the last multiplier of the original unit has a carry propagate adder and not a signed digit

adder. Hence, the delay of the original unit is:

τorig = τdiv,elem

− (13 + 2 × (dlogf−1(d
n

f(k + 1)
e − 1)e + dlogf−1(d

r + 1

f
e − 1)e) + dlog4(r + 1)e)

− 3 × dlog2(n)e
+ (2 × (5 + 2 × dlogf−1(d

n

f
e − 1)e) + 3 × dlog2(

n

2
)e)

τorig = τdiv,elem − 3 + 3 × (dlog2(
n

2
)e − dlog2(n)e) − dlog4(r + 1)e

+ 2 × (2 × dlogf−1(d
n

f
e − 1)e − dlogf−1(d

n

f(k + 1)
e − 1)e − dlogf−1(d

r + 1

f
e − 1)e)

Fig. 6.2 shows a comparison between the proposed adaptation and the original unit when k = 4.

Similar to the case of the adder and multiplier, our adaptation is better when the fan-in is limited.

A higher redundancy (smaller r) improves the performance further. Table 6.1 compares the design

proposed to a conventional one at n = 80 showing the relative improvement and the effect of r on

the improvement.

The improvement in the case of the division and elementary functions unit is even smaller than

the case of the adder or multiplier. For practical reasons, the adapted unit and the original one can

be assumed to have the same time delay.

6.5 Divider and elementary functions unit conclusions

For high speed and large significands, the multiplicative or series expansion approach is the most

suitable for division and elementary functions. A previously proposed unit capable of performing

high speed, high throughput division and elementary functions is adapted to the proposed format.

This adaptation is practically taking the same time delay of the original unit.
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Chapter 7

Putting it all together

As the analysis in the previous chapters showed, the proposed system is suited for high speed floating

point units that are designed for double precision or larger operand width. In the following few

sections an attempt is made to quantify the impact of using this proposed system within a processor

instead of a conventional FPU. The two axes of comparisons where the impact is evaluated are the

speed and the area.

7.1 Speed impact of the overall system

According to the analysis in chapter 4 the time delay of the proposed adder is given by:

τadd = 16

+ 2 × dlogf−1(d
expWF

f
e − 1)e

+ 2 × dlog4(d
n

r
e × (r + 1) − 1)e

+ dlog2(d
n

r
e)e

+ 2 × dlogf−1(d
r + 1

f
e − 1)e + dlog4(r + 1)e

while the best conventional design for large significand sizes has a delay of:

τRL = 15 + dlog4(n)e + dlog2(n)e

+ 2 × dlogf−1(d
expW

f
e − 1)e + 2 × dlogf−1(d

n

f
e − 1)e

Let us define the relative speed improvement of the adder as sa = (τRL − τadd)/τRL. This is a

73
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function of n, f and r. For the purpose of this speedup study n is varied between 53 and 120 since

this is the region of applicability of the proposed system. Two possible values for f are considered,

namely, f = 3 and f = 4 since those are the practical values in static CMOS technologies. Finally

r is set to either 4 or 8.

Similarly a relative speed improvement for the multiplier sm can be defined. The time delay of

the proposed design is:

τmul = 12

+ dlog4(d
n

r
e × (r + 2))e

+ 3dlog2(d
n

2
e + 3)e

+ 2 × dlogf−1(d
r + 1

f
e − 1)e

+ dlog4(d
n

r
e × (r + 1) − 1)e

while the time delay of the conventional designs is given by:

τcon = 6 + dlog4(n)e + 3(dlog2d
n

2
ee)

+ 2 × dlogf−1(d
n

f
e − 1)e + dlog4(n)e

The definition sm is then sm = (τcon − τmul)/τcon.

As discussed in chapter 6, the division and elementary functions unit has practically the same

time delay as the conventional design and hence its speed improvement is considered to be zero. We

also consider that the speed improvement of the other instructions (load, store,. . . ) is zero. Hence,

it is only the adder and multiplier units that contribute to the overall improvement.

In chapter 1 two different studies of instruction mix were presented with different results. One

has the add/subtract unit accounting for 40% of the floating point instructions while the share of the

multiply is 37%. The other has the add/subtract at 24% and the multiply at 19%. If the percentage

of the add/subtract is pa and that of the multiplier is pm then the overall speed improvement of the

system can be estimated as:

ssys = pasa + pmsm

= pa

τRL − τadd

τRL

+ pm

τcon − τmul

τcon

Fig. 7.1 shows a comparison between the different cases of f and r when n varies from 53 to

120. The percentage of the adder and multiplier are taken as given by the two studies mentioned

in chapter 1. Since the second study gives percentages for the adder and multiplier that are almost

half of those given in the first study, it is not surprising that the curve corresponding to the second
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study is almost at half the value of the curve corresponding to the first study. Hence there is nothing

to learn by comparing the curves corresponding to the two studies. What seems interesting is to

compare the curves of the studies to the relative speed improvements of the individual adder and

multiplier.

Around n = 60, the proposed multiplier performs slightly worse than the conventional multipliers

which causes a ‘negative’ improvement. However, in the cases of f = 3, this drop in the speed of

the multiplier is more than offset by the improvement of the adder due to the higher percentage of

use of the adder and its higher speed improvement. In the cases of f = 4, the adder itself does not

have an improvement around n = 60.

As n increases the improvement increases but it is clear that significant improvements are present

only in the case of f = 3, i.e. when the technology forces the designer to use fan-in limited gates.

The value of r should be kept to 4 if a large improvement is required.

As the percentage of use of the adder and multiplier change the conclusions drawn above might

change. For example, the limiting case of very high use of the adder will practically correspond to

the curve of sa. That sa curve shows a improvement of more than 5% at n = 120 even in the worst

case of f = 4 and r = 8. It can reach an improvement of more than 16% in the favorable case of

f = 3 and r = 4.

The time delay equations developed through this work and the relative speed improvement

relations explained in this chapter are tools enabling the designer of a floating point unit to evaluate

the different choices. These tools help us to identify the region of applicability of the proposed

system depending on the instruction mix assumptions.

7.2 Area impact of the overall system

It is not possible to accurately predict the area of the proposed designs without performing a physical

layout of the transistors. This is the third level of evaluation according to the classification given in

chapter 3 and it is beyond the scope of the current work.

It is still however possible to estimate some of the impact of the proposed system. The register

file of the FPU is clearly larger and the additional area needed is approximately proportional to the

increase in the width of the floating point numbers. That increase of the width also translates into

a wider data-path for the functional units. the increase of the area of the functional units is not

necessarily proportional to that increased width though. For example, in the proposed design of the

adder, the shifters are simpler than in the conventional adders. Another example is the logic for

carry computation in the final carry propagate adder in both the floating point adder and multiplier

are eliminated in the proposed designs. Despite the increased data-path width these hardware

simplifications might make the total area of the functional units comparable to conventional ones.

While unable to confirm this now we can quantify the relative increase in the width.
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Figure 7.2: Width of the floating point number versus the significand width.

As mentioned in section 4.3, if the significand width of an floating point number inspired by the

IEEE formats (including the hidden 1) is n then the width of the significand in the proposed format

is equal to dn
r
e × (r + 1) − 1. In addition to that 5 bits are needed for the guard, round and sticky

digits. As for the exponent width of the proposed format expWF , it is wider than the exponent

width of the IEEE format expW . Hence, for n ≤ 24 expW is taken as 8 and expWF is taken as 11.

Otherwise, expW is 11 and expWF is 15.

The full width of the number of an IEEE-like format is then

wcon = 1 + (expW ) + (n − 1) = expW + n

The first 1 being for the sign bit and the deducted 1 is because of the hidden one. In the case of the

proposed format there is no hidden one and the full width is

wpro = 1 + expWF + dn

r
e × (r + 1) − 1 + 5

= 5 + expWF + dn

r
e × (r + 1)

Fig. 7.2 shows the change of the format’s width over the range of n = 8 to n = 120 with the cases

of r = 4 and r = 8. There is a jump in the size at n = 24 due to the sudden change of the exponent

besides this, the width of the conventional floating point numbers is a smooth line. On the other

hand, the width of the proposed format increases in steps because it increases by full digits of r + 1

bits each time. Hence the steps in the case of r = 8 are wider and higher than in the case of r = 4.

We can define the relative increase in width as wrel = (wpro −wcon)/wcon. Fig. 7.3 presents this

relative increase in the width. As expected the use of redundancy entails a very high cost at small

significand width. On the other hand, in the region of applicability of the proposed format (double

precision and higher) the relative increase in the width is limited to about 40% or less.

To re-iterate the relative increase in width is directly proportional to the increase in area of the
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Figure 7.3: Relative increase in the width of the proposed format.

Table 7.1: Time delay and width increase at n = 80 and f = 3.
r = 4 r = 8

Improvement Addition 12.5% 10%
Multiplication 9.5% 4.8%
Div. and elem. functions 5.94% 3.96%

Width increase 31.87% 20.88%

register file but not necessarily to the increase in area of the functional units. This relative increase

in the width could be taken as an upper bound on the increase in area.

7.3 Conclusions from a system perspective

The proposed system provides designers of floating point units with more options that can enable

them to trade-off an amount of extra area for an improved speed. So it is possible for example to

achieve an improvement of 5 to 10% in speed while sacrificing at most 20 to 30% increase in area. To

give a concrete example, Table 7.1 shows the improvements in time delay and the potential increase

in width for the case of n = 80 and f = 3. Whether the trade-off is desirable or not is a question

of cost and benefit analysis specific to the design required. This chapter presented tools to help the

designer make such a decision.



Chapter 8

Conclusions and future work

The work presented in this research aimed at understanding the issues concerning the design of a

floating point system using redundant digits. Through the analysis, the region of the design space

where such a system outperforms conventional systems was identified. An attempt was made to

get as close as possible to the real performance by implementing both the adder and the multiplier

at the transistor level. This proved to be a tedious and time consuming task but very beneficial

at the end. This task enabled the verification of the correctness of the algorithm as well as the

determination of the approximate speed of operation. The prediction by the analytical model and

the simulation result show that the proposed system has an advantage over the conventional systems

at large significand sizes. The cost for this speed improvement is predicted to be some increase in

the area of the floating point unit. The amount of this increase cannot be exactly predicted except

with a full layout of the circuits.

In short, the contributions of this work include:

1. The proposed semi-redundant format is not a fully redundant format where the size of the

significand doubles but it retains a useful redundancy that improves the speed of the circuits.

The use of a hexadecimal exponent allows for a further speed improvement by simplifying the

shifters.

2. The postponed rounding technique allows for faster circuits where the rounding delay is hidden

by the exponent difference calculation.

3. A new technique for the leading digit detection is derived to suit the proposed redundant

format. Its underlying ideas of doing the coarse detection only and leaving the fine adjustment

to the rounding stage are applicable to other redundant formats.

4. A new Booth recoding scheme enables “negative” valued bits as inputs and can directly handle

the redundant format.

79



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 80

5. A parametric time delay model that is quite powerful in predicting the time delay of large

floating point units yet its use is simple. Such a model is useful for comparisons and its

estimations are not very far off from more accurate (but much slower and not parametric)

simulation results.

These ideas barely opened the door for a host of other interesting points for further research.

• Some machines implement both decimal and binary number systems. A simple modification in

the logic for carry generation in the SD adders enables both number systems to use the same

hardware unit with minimal extra area. In the case of decimal, each four bits will represent a

digit in {−9,−8, · · · , 8, 9} and the assumed radix will be 10 instead of 16.

• Adders and multipliers for various applications (specially multimedia applications) are parti-

tioned to allow for the same hardware to do any of a 64 × 64 operation or two simultaneous

32 × 32 operations or even four simultaneous 16 × 16 operations. With the redundant format

already partitioned into digits, it is easy to segment the adder into two or four parts. We just

add at the required breaking points some multiplexers to either stop or pass the carries; hence

effectively breaking the large unit into smaller ones. Segmenting the multiplier or the divider

is not as simple as that but still it can be done with probably less additional hardware than

in the conventional designs.

• If a layout is done for the complete floating point unit (including division and elementary

functions) then accurate speed, area and power estimates are possible. A fabricated and

tested chip is the litmus test for redundant digit floating point designs.

• With more details being put in the proposed design at the layout level there are some questions

that should be checked at the algorithmic level to probably introduce further enhancements:

– Is it possible to use a leading digit prediction scheme in the adder?

– Can we reduce the hardware of the cancellation path instead of requiring A −B, B − A,

A − shift(B) and B − shift(A)?

– Is there a benefit in using the idea of switching E and P instead of generating mX in the

multiplier?

– Can all the algorithms used be formally proved as correct?

• On the more innovative side, maybe a comparisons with other types of redundancies (say where

the extra bits are not equidistant) or other number representations (say continued fractions)

will prove beneficial to further improve the performance of the floating point unit.

• In fact, in the future, we should think of performance as not just equivalent to speed but as

a general function including speed, area, power, reliability, testability, serviceability, . . . and
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redundancy can help in a few of those areas indeed. Redundant representations have been used

for error detection and correction. A scheme can be designed where redundancy serves for both

speeding up the computation and making it less error prone. Redundancy also shortens the

carry propagation path, does this mean a smaller number of the circuit nodes switching and

a smaller power consumption? Can redundant representation produce high speed systems

consuming less power? These are open questions.

As one of my teachers once told me, “When you start researching a topic, it is like an avalanche

afterwards!” This is true, once you start something it opens the door for you to do many more

things. The amount of knowledge that we, humanity, attained is very limited and we can all, and

in fact we must all, try to learn more.
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“And you did not get from knowledge except a little” translation from The Holy Quran, the last

part of verse 85 of Surat-Al-IsrA’ (the night journey, 17)



Appendix A

Leading digit detection

The challenge in the leading digit detection part of the proposed design is due to the different

patterns that result in leading insignificant digits. The partial compression that achieves the coarse

adjustment by detecting the patterns

1 −15 −15 · · · −15 l m · · · = 0 0 0 · · · 1 l m · · ·

−1 15 15 · · · 15 l m · · · = 0 0 0 · · · −1 l m · · ·

depends on two mechanisms: N-recoding and P-recoding.

As mentioned in section 4.2.1, for two consecutive digits of the result,

· · · si3 si2 si1 si0 si−13 si−12 · · ·
si4 si−14

the N-recoding is defined as reseting si−14 and si0 to 0 if they were both 1. Hence the output bits

are sn
i0

= si0si−14 and sn
i−14

= si0si−14 while the remaining bits of the digit pass unchanged.

The P-recoding eliminates the case of insignificant leading −1 followed by positive digits. Refer-

ring to the two consecutive digits above, if si0 = 1 and si−14 = 0 then we can think of si−14 as equal

to two parts +1 and −1. We separate the +1 and add it to the higher order digit si while the −1 is

kept with the lower order digit si−1 as its new si−14 . This separation occurs only if the whole digit

si−1 is not exactly equal to zero. Otherwise, the new si−1 becomes −16 which is undesirable as will

be explained shortly. Applying P-recoding to the case of repeated digits of 15 the result is:

digits 0 −1 15 · · · 15 l · · ·
equiv. 0 1111 1111 · · · 1111 l3l2l1l0 · · ·
bits 1 0 0 · · · l4 · · · · · ·
result 0 0 0 · · · −1 l · · ·

82
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i−1
s    + 1

u
i

MUX MUX

0 1 0 1
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s + 1 s 

ui−1
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s 

Figure A.1: P-recoding implementation.

In this, the digit l is assumed negative (l4 = 1) and the whole result is negative at the end. If l is

positive then one more digit becomes zero and the result is 0 (l − 16) · · ·. Note that even in this

case, the sign of the result is still negative since | l |≤ 15. In general due to the choice of base and

possible values in this number system, any number has the sign of its leading non-zero digit [31].

The N and P-recodings do not alter that.

The condition mentioned above for the P-recoding to change the bits is si0 = 1, si−14 = 0 and

zi−1 = 1, where zi−1 is an indicator to show if the digit si−1 is not zero. Let ui = si0si−14zi−1,

then if ui = 1 the output of the P-recoding for digit i is si + 1 instead of si. Obviously, ui could

be added to si or, better, it could be used as a select line in a multiplexer which has si and si + 1

as its inputs. This ui signal also affects the most significant bit of the lower adjacent digit si−1. If

ui = 0 then the output of the P-recoding for this bit, sp
i−14

, is determined just by the outcome of the

multiplexer choosing between si−1 and si−1 + 1 depending on ui−1. If, on the other hand, ui = 1

then the two possible cases of ui−1 need to be analyzed.

ui−1 = 0: sp
i−14

= 1 = si−14 (remember that si−14 = 0 for ui = 1).

ui−1 = 1: then two conditions are possible:

sign bit of si−1 + 1 is 0: Then, as above, sp
i−14

= 1.

sign bit of si−1 + 1 is 1: This means that due to the added 1 an overflow occurred which

has a value of +1. That positive overflow is canceled out by the −1 resulting from the

P-recoding splitting of the original 0 in si−14 , thus sp
i−14

= 0.

Hence in all the cases, if ui = 1 the resulting sp
i−14

bit is the inverse of the bit coming out of the

multiplexer choosing between si−1 and si−1 + 1. This leads to the possible implementation shown

in Fig. A.1.

As is the case for the N-recoding an “out of bound” digit value can occur. In this case, a value of

+16 results if the pattern of digits k 15 l with k0 = 0 and l4 = 0 are entered into a P-recoder. Again,

this is not problematic since this recoded format is only within the LDD circuits and the position

of the leading non-zero digit is correctly detected as described below. However, this is why it was
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important to note above that in P-recoding, this split of the zero in si−14 occurs only if si−1 is not

exactly equal to zero in order to prevent the new si−1 from becoming −16. Otherwise, a difficulty

arises: how to distinguish between the out of bound +16 and the −16 resulting from subtracting 16

from a digit that is already zero?

Either the N-recoding or the P-recoding can be done first, there is no strict order:

P (N(s)) The N-recoding detects the case of si0 , si−14 = 1, 1 and can produce a digit of value −16 as

an anomaly in the case of · · · (even) −15 (−ve) · · ·. However, this does not affect the following

P-recoding and the result of the N-recoding gives the correct position and sign of the leading

digit since the N-recoding results in either sn
i0

, sn
i−14

= 0, 0 (normal case) or 0, 1 (anomaly)

which are passed as is in a P-recoding.

N(P (s)) The P-recoding detects the case of si0 , si−14 = 1, 0 and can produce a digit of value +16 as

an anomaly in the case of · · · (even) 15 (+ve) · · ·. This does not affect the following N-recoding

because the P-recoding results in either sp
i0

, sp
i−14

= 0, 1 (normal or anomaly) or 0, 0 (case of

si−1 + 1 overflow) which are passed as is in an N-recoding. However, although the result has

the correct position for the leading digit, it might be assumed negative if the first digit is that

anomaly of +16. This problem is also present in the case of P (N(s)) above.

The problem of having the correct position but possibly the wrong sign can be solved by keeping

the sign information of each digit in another bit. Let us call it ni which is 1 if the digit is negative.

So, before any recoding, ni = si4 . The following tree allows us to deduce the expression giving np
i

the output after the P-recoding.

〈

ni = 0

〈 ui+1 = 0

〈

sp
i4

= 0 np
i = 0, for si > 0 and si + 1 < 16

sp
i4

= 1 np
i = 0, for si = 15 and ui = 1

ui+1 = 1

〈

sp
i4

= 0 np
i = 0, for si = 15 and ui = 1

sp
i4

= 1 np
i = 1, for si > 0 and si + 1 < 16

ni = 1 ⇒ ui+1 = 0

〈

sp
i4

= 0 np
i = 0, for si = −1 and ui = 1

sp
i4

= 1 np
i = 1, for other cases with si < 0

So digit i is positive if it was already positive before the P-recoding and either ui+1 = 0 or

ui+1 = 1 and sp
i4

= 0. The condition for it to be negative is:

np
i = nis

p
i4

+ niui+1s
p
i4

= (ni + ui+1)s
p
i4
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In the N-recoding, the equation giving nn
i is simpler to deduce. Basically, if si+10si4 = 1 then

nn
i = 0 otherwise nn

i = ni. This gives:

nn
i = nisi+10si4

If, for each digit after the recodings, another indicator zi is kept to indicate if the digit is not

zero then the final decision of the LDD is based on those ni’s and zi’s. This indicator is given by

zi = si4 + si3 + si2 + si1 + si0 . The first digit that has zi = 1 is the leading digit and its sign is the

corresponding ni. The bit si4 is included in zi because of the ±16 anomalies.

For the special case of 000(1)(−ve) · · ·, the LDD indicates a shift up to the digit after the 1

and indicates that its sign is positive (n = 0 after the N-recoding). The left shifter shifts to the

correct position and uses the information about the sign given by the LDD to set the sign bit of the

resulting most significant digit accordingly. The same goes for the case of 000(−1)(+ve) · · ·. The

reason these two special cases are handled in this manner is that the rounding stage is supposed to

work only on the fine adjustment with at most one bit location shift. As an example, if the result

is 000(1)(−14) · · · and the LDD did not function as described above but rather indicated that the

leading digit is the 1 then in the rounding stage the “fine” adjustment evaluates:

0001 0010 xxxx · · · ⇒ 0000 0010 xxxx · · ·
1 x x 0 x x

which is a shift by three bit positions. The rounding stage is kept simpler by making the maximum

shift there equal to one bit location. This condition to have at most one bit location shift is insured

in the cancellation path by the functionality of the LDD as described above. In the far path this

condition is insured by the design of the adder used there.

If the end result of the cancellation path is negative then it should be inverted and the sign of

the whole floating point number changed. Otherwise, to improve the speed, the SD adder can be

designed to output the sum digits and their negatives. Both of those are then left shifted in parallel

to the position determined by the LDD using two shifters. One of them is finally chosen depending

on the sign of the end result. The implementation of the floating point adder presented in this work

uses this latter approach.

The advantage of having the P-recoding before the N-recoding is that the si + 1 required for it

can be calculated in the adder in parallel. This saves some time compared to doing it sequentially

on the outcome of the N-recoding. However, the disadvantage is that the adder’s output can be

either xi + yi, xi + yi + 1 or xi + yi − 1 depending on the carry into this digit position. Hence, the

needed si + 1 could be either xi + yi, xi + yi + 1 or xi + yi + 2 which means that we need to have

four addition circuits to calculate the different possibilities and use three of those for each of the

outcomes si and si + 1. Other ways may be devised to eliminate the need for the fourth addition
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circuit as described below. Some designers may opt to have the faster implementation regardless of

its complexity and others may choose the simpler one. That is why both, the case of implementing

P (N(si)) and that of N(P (si)) are outlined here with the case of P (N(si)) presented first because

it might be conceptually easier.

N-recoding first

In this case the outcome of the N-recoding is:

sn
i−14

= si0si−14

sn
i0

= si0si−14

sn
i1

= si1

sn
i2

= si2

sn
i3

= si3

nn
i = si+10si4

zn
i = si+10si4 + si3 + si2 + si1 + si0si−14

For the following P-recoding, the condition ui to use sn
i + 1 becomes then

upn
i = sn

i0
sn

i−14z
n
i−1

= (si0si−14)(si0si−14)(si0si−14 + si−13 + si−12 + si−11 + si−10si−24)

= si0si−14(si−13 + si−12 + si−11 + si−10si−24)

If upn
i = 1 then one is added to sn

i and the most significant bit of the result of the similar

addition for sn
i−1 is inverted. Hence, spn

i = sn
i + ui − (16)ui+1. The final sign of each digit is given

by npn = (nn
i + upn

i+1)s
pn
i4

. For this, as well as for the decision of whether the digit after the recoding

is zero or not, the bits of spn
i are needed. These are basically the outcome of adding a single bit upn

i

to sn
i and a special treatment for spn

i4
. Either an adder could be used for this, or an evaluation of

the boolean expression giving each of the bits of spn
i could be made. The resulting equations are:

spn
i0

= sn
i0
⊕ upn

i

spn
i1

= sn
i1
⊕ sn

i0
upn

i = sn
i1
⊕ upn

i

spn
i2

= sn
i2
⊕ sn

i1
upn

i

spn
i3

= sn
i3
⊕ sn

i2
sn

i1
upn

i
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spn
i4

= sn
i4
⊕ sn

i3
sn

i2
sn

i1
upn

i ⊕ upn
i+1

By using the identities a⊕(ab) = ab, a(a⊕b) = ab, (a⊕b)+(c⊕ab)+(d⊕abc) = abcd(a+b+c+d)

and substituting in terms of si then simplifying, the results become:

upn
i = si0si−14(si−13 + si−12 + si−11 + si−10si−24)

spn
i4

= (si+10si4 + upn
i+1) ⊕ si3si2si1u

pn
i

npn
i = (si+10si4 + upn

i+1)(si3si2si1u
pn
i )

zpn
i = si0si−14(si−13 + si−12 + si−11 + si−10si−24)

+ si3si2si1u
pn
i (si3 + si2 + si1 + upn

i )

+ (si+10si4 + upn
i+1)(si3si2si1u

pn
i )

+ (si+10si4 + upn
i+1)si3si2si1u

pn
i

The equations for spn
i4

and npn
i fit the expected behavior. For spn

i4
, it is 1 if the original digit is

negative and, passing through the N-recoding, it is not affected because the higher digit is even (the

si+10si4 part) or if due to the P-recoding a 1 is inserted there (the upn
i+1 part). These two parts are

mutually exclusive and, in fact, the 1 that they produce has a negative value. To either of these

a positive one can be added if upn
i = 1 and there is a path for it to propagate over the bits of the

digit (condition for that is si3si2si1si0). Similarly, for npn
i , the digit is negative (npn

i = 1) if either

of the first two parts discussed above introducing a negative 1 into spn
i4

is true and the condition for

the positive 1 propagation is false. This insures that npn
i remain 0 when spn

i4
is 1 only due to the

propagating 1 since in that case spn
i4

is not of negative value anymore and the whole digit is positive.

P-recoding first

Depending on the carry into the adder digit position being considered, the output could either be

xi + yi, xi + yi + 1 or xi + yi − 1. Hence, if the P-recoding is done first then, within the adder,

some circuits to calculate xi + yi + 2 are needed. Then, the carry could be used to determine

the value corresponding to si + 1. The condition for ui in this case becomes up
i = si0si−14zi−1 =

si0si−14(si−13 + si−12 + si−11 + si−10). This up
i could then be used to select between si and si + 1.

However, instead of adding extra circuitry and selecting later, the same idea of calculating spn
i in

terms of the bits of si developed for the case of “N-recoding first” can be applied. This produces:

up
i = si0si−14(si−13 + si−12 + si−11 + si−10)

sp
i0

= si0 ⊕ up
i = si0u

p
i
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sp
i1

= si1 ⊕ up
i

sp
i2

= si2 ⊕ si1u
p
i

sp
i3

= si3 ⊕ si2si1u
p
i

sp
i4

= si4 ⊕ si3si2si1u
p
i ⊕ up

i+1

= (si4 + up
i+1) ⊕ si3si2si1u

p
i

np
i = (si4 + up

i+1)s
p
i4

= (si4 + up
i+1)(si3si2si1u

p
i )

Then the following N-recoding produces

snp
i0

= sp
i0

sp
i−14

= si0u
p
i ((si−14 + up

i ) ⊕ si−13si−12si−11u
p
i−1)

= si0u
p
i (si−14 ⊕ (si−13si−12si−11u

p
i−1))

snp
i1

= sp
i1

snp
i2

= sp
i2

snp
i3

= sp
i3

snp
i4

= sp
i+10s

p
i4

= (si+10 + up
i+1)((si4 + up

i+1) ⊕ si3si2si1u
p
i )

= si+10(si4 ⊕ si3si2si1u
p
i ) + up

i+1(si3si2si1u
p
i )

nnp
i = np

i (s
p
i+10

sp
i4

)

= (si4 + up
i+1)s

p
i4

(sp
i+10 + sp

i4)

= (si4 + up
i+1)((si4 + up

i+1) ⊕ si3si2si1u
p
i )(si+10u

p
i+1)

= (si+10si4 + up
i+1)(si3si2si1u

p
i )

Once again, the equations for snp
i4

and nnp
i fit the expected behavior. However, the up

i used here

is slightly simpler to evaluate compared to the upn
i used in the case of “N-recoding first.” Finally,

the bit indicating if the digit is zero or not is given by

znp
i = si0u

p
i (si−14 ⊕ (si−13si−12si−11u

p
i−1))

+ si3si2si1u
p
i (si3 + si2 + si1 + up

i )

+ (si+10(si4 ⊕ si3si2si1u
p
i ) + up

i+1(si3si2si1u
p
i ))
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The condition ui = si0si−14zi−1 is not a tight condition. The P-recoding causing insignificant

digit deletion occurs when si−1 = 15 = 01111bin and si = −1 = 11111bin or si = 15 (assuming that it

is preceded by some s = −1). So, the strictest condition is ui = si3si2si1si0si−14si−13si−12si−11si−10 .

Other conditions between those two extremes can be used, for example ui = si3si2si1si0si−14si−13 .

It is interesting to find out the best choice of ui to minimize the hardware and time delay of the

LDD.

To show the possible minimizations, when using ui = si3si2si1si0si−14si−13 the case of P (N(s))

gives:

upn
i = si3si2si1s

n
i0

sn
i−14

si−13

upn
i = si3si2si1(si0si−14)(si0 + si−14)si−13

upn
i = ui

Hence,

spn
i0

= sn
i0
⊕ upn

i = (si0si−14) ⊕ ui

spn
i1

= sn
i1
⊕ sn

i0
upn

i = si1 ⊕ ui

spn
i2

= sn
i2
⊕ sn

i1
upn

i = si2 ⊕ ui

spn
i3

= sn
i3
⊕ sn

i2
sn

i1
upn

i = si3 ⊕ ui

spn
i4

= sn
i4
⊕ sn

i3
sn

i2
sn

i1
upn

i ⊕ upn
i+1

= si+10si4 ⊕ ui ⊕ ui+1

= (si+10si4 + ui+1) ⊕ ui

which finally yields:

npn
i = (si+10si4 + ui+1)ui

zpn
i = (si+10si4 + si3 + si2 + si1 + si0si−14)ui

+ uiui+1(si+10 + si4)

It is clear that with this choice of ui the equations are simpler. The simplifications occurring in

spn
i3,2,1,0

are due to the fact that with this choice of the condition, if ui = 1 then bits 0 to 3 of si are

all ones. These bits become all zeros in si + 1 and zpn
i depends only on bit 4 in that case. On the

other hand, if ui = 0 then all the bits of spn
i enter into the determination of zpn

i .
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Figure A.2: Encoding the position of the leading digit with a hierarchical tree approach.

Similarly, the case of N(P (s)) yields:

up
i = ui

nnp
i = (si+10si4 + ui+1)ui

znp
i = (si+10si4 + si3 + si2 + si1

+ si0(si−14 ⊕ ui−1))ui + uisi+10si4

The leading digit detection implemented in this work uses ui = si3si2si1si0si−14si−13 and

P (N(s)) to determine the values of ni and zi. The leading non-zero digit is then determined

by using the zi bits out of the recodings as inputs to an encoder. That encoder is used to encode the

position of the first non-zero digit and this amount is forwarded to the left shifters to normalize the

result. Obviously, the ni bits out of the recodings are shifted as well. The final sign of the number

is that of the leading digit as determined by its n bit. Based on this either the result or its negation

is chosen and the sign of the whole floating point result is affected.

As the comparative study of leading digit prediction [69] indicates, there are two ways of obtaining

an encoded count of the number of leading zeros. Either by a monotonic string of zeros followed

by ones or by a hierarchical tree structure. The hierarchical tree [82] is as shown in Fig. A.2. It

obtains the encoded position most significant bit first and then allows the shifting operations to be

overlapped in time with the decision on the remaining bits. Hence, the result out of the left shifter

in Fig. A.3 is available only one multiplexer delay after the last bit of the position is determined.

The LDD used in the floating point adder implemented follows the first approach of having

a monotonic string and using a priority encoder to indicate the approximate location of the first

non-zero digit. That approach produces an encoding that has only one signal active as shown in

Fig. A.4. Such an encoding fits the requirements of the barrel shifters used in the cancellation path.

The blocks to the left of Fig A.4 are detailed in Fig. A.5. They produce the ni and zi signals given

by the P (N(s)) recoding with ui = si3si2si1si0si−14si−13 as discussed above.
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Figure A.3: Leading digit detection with a hierarchical tree approach.
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Figure A.4: Encoding the position of the leading digit with a priority encoder.
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In conclusion, the recoding techniques discussed in this appendix eliminate the need for complex

pattern matching schemes. That enables a simpler implementation for the leading digit detection

block needed in the proposed redundant digit floating point adder design. The optimum choice of

ui to minimize the hardware complexity or to minimize the time delay of the LDD is an issue for

further research.



Appendix B

Rounding logic

In the proposed system, the numbers are saved before rounding them to the register file. When such

a number is used by another functional unit, it is rounded first. The position of the least significant

bit of the number where the rounding takes place (the rounding location) is determined by the

leading non-zero bit of the MSD and the signed sticky digit of the part below that leading bit. In

the following sections, the hardware determining the rounding location and deciding on the rounding

value is described. The rounding for the multiplier where three special correction bit vectors are

added to the partial products is also explained.

B.1 Rounding in the adder

Fig. B.1 shows the rounding logic used in the adder given our definition of the bits of the MSD and

LSD of the redundant format as

a b c d · · · · · · · · · f g h i g0 r s0

e g1 s1

At the top left, simple logic gates use the bits of the MSD to determine the signals ld, lc, lb and

la indicating the approximate leading bit. Once the signed sticky (ss) signal is known, the exact

location is determined. The signed sticky is generated by another block that is not shown in this

figure and it indicates whether the bits below the the leading one of the MSD constitute a positive

or negative number. Hence there are five possibilities for the exact location of the leading bit: either

one of the four bits of the MSD or one bit lower than d. This last cases occurs if a = b = c = 0,

d = 1 and ss = 1. This is a case of fine adjustment as mentioned in the discussion regarding the

leading digit detection. Let us call this case dm as a short for d minus one. If the leading bit is a

then the location of rounding is at bit f of the LSD and so on for the other locations.
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Table B.1: Logic equations for rp and rn

Leading bit Round at Rounding value

dm g0

rp = RNE rs1(s0 + g0)

+ (RP sign + RM sign)(r + s1s0)

rn = (RP sign + RM sign + RZ)rs1

d i

rp = RNE g
1
g0rs1(r + s0 + i)

+ (RP sign + RM sign)g
1
(g0 + r + s1s0)

rn = RNE g1(g0
+ rs1 + r s0i)

+ (RP sign + RM sign + RZ)(g1 + g
0
rs1)

c h

rp = RNE i(g1 + g
1
g
0
rs1)(g0 + r + s0 + h)

+ (RP sign + RM sign)(i + (g1 + g
1
g
0
rs1)(g0 + r + s0))

rn = (RP sign + RM sign + RZ)i(g1 + g
1
g
0
rs1)

b g

rp = RNE h(i + (g1 + g
1
g
0
rs1))(i + g0 + r + s0 + g)

+ (RP sign + RM sign)(h + i + (g1 + g
1
g
0
rs1)(g0 + r + s0))

rn = (RP sign + RM sign + RZ)hi(g1 + g
1
g
0
rs1)

a f

rp = RNE g(h + i + (g1 + g
1
g
0
rs1))(h + i + g0 + r + s0 + f)

+ (RP sign + RM sign)(g + h + i + (g1 + g
1
g
0
rs1)(g0 + r + s0))

rn = (RP sign + RM sign + RZ)ghi(g1 + g
1
g
0
rs1)

The primitive rounding logic block to the left of the figure is responsible for generating the

speculative bits indicating the rounding value. The rounding value could be positive, negative or

zero and hence is represented by two bits rp and rn and its value is given by rp − rn. Since the

digits in the proposed format are always between −15 and +15, then the digit that was shifted out

and from which the guard and round bits were drawn also falls in that range. Hence, if g1 = 1

we are guaranteed that at least one other bit in that digit that was shifted out is one. So, either

g0 = 1, r = 1 or the sticky digit is positive (i.e. s1 = 0 and s0 = 1). This property insures that

the fractional range at bit i the least significant bit of the LSD is bounded between −1 and 1. At

g0, this property insures that the fractional range is bounded between 0 and 1. For the other bit

locations, the fractional range is bounded between −0.5 and 1. Given the location of the leading bit,

the values of rp and rn are derived based on Table 4.1 resulting in the equations shown in Table B.1.

Those equations insure that either rp = rn = 0 or only one of them is set to one but never both at

the same time.

The Digit rnd part in the middle of the figure generates three possible outcomes for the cases

of positive, zero or negative rounding value at each possible rounding location. These outcomes are
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Table B.2: Logic equations for the rounded LSD

Round at rp − rn co e′ f ′ g′ h′ i′ g′

1 g′

0

+1 efghi e(fghi) f ⊕ ghi g ⊕ hi h ⊕ i i 0 0

i 0 0 e f g h i 0 0

−1 efgh efghi + e(fghi) f ⊕ (g + h + i) g ⊕ (h + i) h ⊕ i i 0 0

+1 efgh e(fgh) f ⊕ gh g ⊕ h h 0 0 0

h 0 efgh e(f + g + h) f g h 0 0 0

−1 efg efgh + e(fgh) f ⊕ (g + h) g ⊕ h h 0 0 0

+1 efg e(fg) f ⊕ g g 0 0 0 0

g 0 efg e(f + g) f g 0 0 0 0

−1 ef efg + e(fg) f ⊕ g g 0 0 0 0

+1 ef ef f 0 0 0 0 0

f 0 ef ef f 0 0 0 0 0

−1 e f f 0 0 0 0 0

the values of the bits in the locations of e to g0 which we can call e′ to g′0 to signify the rounded

values. In addition to that there might be a carry out (co) to the next higher digit. These values

are given by the logic equations shown in Table B.2.

A few important points played a role in deriving those equations:

1. Since rp and rn are mutually exclusive, it is possible to use only one signal, co, to denote a

positively valued carry in the case of rp = 1 and a negatively valued carry otherwise.

2. For the rest of the units, it is important to guarantee that the generated digits are between

−15 and +15. Hence, even in the case of truncation of the LSD there might be a carry out of

it. This occurs if e = 1 and the other bits that were to remain are all zeros. In this case, a

co = 1 signal is generated and e′ is reset to zero.

3. The case of rounding at g0 is slightly different.

rp = 1: Then g′0 = g0, g′1 = g1g0 and a carry of g1g0 must be added to the LSD. A multiplexer

with g1g0 as a select line is used to choose between the outcome of rounding at i when

the rounding value is 1 or 0.

rp = rn = 0: This is a case of truncation and, as above, we must guarantee that the new digit

is within the permissible range. Hence, g′0 = g0 but g′1 = g1g0 and a negatively valued
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carry of g1g0 is added to the LSD. Again, a multiplexer with select line equal to g1g0 is

used to choose between the rounded LSD at location i when the rounding value is −1 or

0.

rn = 1: Then g′0 = g0, g′1 = g0 and a negative carry of g1 is added to the LSD. The select line

of the multiplexer is then g1 and the inputs are the rounded LSD at i when the rounding

value is −1 or 0.

Since the signed sticky, ss, signal is a late signal (O(log n) as discussed earlier) the Digit rnd

block speculatively uses the approximate location of the leading bit to multiplex all the possible

outcomes and to generate two sets of digits. A set for the case of a zero signed sticky and another

set for the case of a signed sticky equal to one. As shown in Fig. B.1, the set assuming that the

signed sticky is one enters into the multiplexer in the center of the figure that selects the correct

digit depending on the values of rp and rn given that ss = 1. The other set is channeled to the

multiplexer to the right of the Digit rnd block which also selects the correct digit depending on the

values of rp and rn given that ss = 0. Finally, the multiplexer to the top right of the figure gives

the final output digit depending on the value of ss. The signed sticky ss is also used as a select line

for the other multiplexers to the right of the figure giving the values of the rounded g1 and g0 as

well as the possible three values for the carry out to the next higher digit: rcp = 1 if it is positive,

rcm = 1 if it is negative otherwise if it is zero the signal rno-cpcm is set to one.

Similar to the encoder of the LDD, the logic deciding the ss signal detects the sign of each digit

and whether it is zero or not. Then, the priority encoder shown in Fig. B.2 is used to determine the

value of ss which is given by the signal N116 while the signal Z116 indicates if all the bits of the

significand are zeros (useful for checking for a zero input).

B.2 Rounding in the multiplier

As mentioned in section 5.2.2, the multiplication is divided into three parts:

X × Y = XchoppedYchopped By Booth recoding, generating partial

products and summing

+(bx + rx)Ychopped + (by + ry)Xchopped 2 special partial products added in the tree

+(bx + rx)(by + ry) special correction added to the tree

Fig. B.3 shows how (by + ry)Xchopped is formed.1 The rounding portion (by + ry) is done by

feeding the bits of Y to the correction block in the bottom right of the figure to generate five shifting

signals sh4 to sh0 and the correction rounding value. The output of the correction rounding value

1Obviously, the same circuit with the inputs reversed can do (bx + rx)Ychopped.
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Figure B.2: Encoding the signed sticky digit using a priority encoder.
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or is coded by two bits orp and orn and its value is orp − orn. In the figure, the complement of

those two signals are shown as orpb and ornb. This correction block at the bottom right basically

recodes the multiplication by (by + ry) as a multiplication by 2shift followed by a selection of either

the positive or negative of the shifted operand based on the value of the orp and orn signals.

The correction block must decide on the exact amount of shifting to be done. For this to be

achieved, the leading one of the MSD of Y is detected. Similar to the rounding in the adder, let us

assume that the bits of the MSD are a b c d and let us assume that the signals indicating which bit

is the leading one are labeled la, lb, lc and ld. Those signals are among the inputs to the correction

block. The other inputs are the value of the signed sticky ss, the rounding mode selectors, the sign

of the operand and the bits of the LSD and guard, round and sticky digits of Y . As in the discussion

of the adder, let us define the bits of Y as:

a b c d · · · · · · · · · f g h i g0 r s0

e g1 s1

If the signed sticky is not set (ss = 0), the value of by the bit directly after the rounding location

is irrelevant, the output corrected value or is given by ry alone and the shifting amount is determined

only by the leading one of the MSD. On the other hand, if ss = 1 then by must be considered. The

evaluation of (by + ry) is tricky since ry could be negative, zero or positive while by is positive or

zero except at the g0 location where it might be negative, zero or positive. Hence, when ss = 1 and

the rounding is

not at the g0 location: If both by and ry are positive then (by + ry) = 2 which means that,

effectively, it is carried to the next higher bit location and the shift amount is increased by

one canceling the effect of ss. Otherwise, the effect of ss is taken into account and the shift

amount derived based on it.

at the g0 location: The value of g1g0 is given by −2g1 + g0 and can be in {−2,−1, 0, 1}

• g1g0 = 01 = (1) then, as above, if ry = 1 it is a carry to the next higher bit. Otherwise,

the effect of ss is taken into account.

• g1g0 = 00 = (0) then by = 0 and the effect of ss is taken into account.

• g1g0 = 11 = (−1) then if ry = −1 (note the sign) it is a carry to the next higher bit.

Otherwise, the effect of ss is taken into account.

• g1g0 = 10 = (−2) in this case ry ∈ {0, 1}2 and if it is zero a carry to the next higher bit

occurs. Otherwise, the effect of ss is taken into account.

2Due to the condition on the number system that a digit cannot be −16, if g1g0 = 10 then in the bits representing

the guard round and sticky digits either the round bit r = 1 or the sticky digit is positive. This leads to only a

positive fractional value at g0 which means that the rounding value at this location cannot be negative as noted in

section B.1.
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Since the rounding location could be anywhere from the g0 location to the f location, the shift

amount produced by the correction block is assumed to be zero if the value of (by + ry) evaluates

to be at the g0 location. Let the rounding values at any location be represented by rp and rn with

a subscript referring to the leading bit of the MSD corresponding to this location. These rounding

values are evaluated by the primitive rounding logic block described in the discussion of Fig. B.1.

The signals for the shift are then given by the following equations:

sh4 = ss la + ss la(grpb
)

sh3 = ss lb + ss la(grpb
) + ss lb(hrpc

)

sh2 = ss lc + ss lb(hrpc
) + ss lc(irpd

)

sh1 = ss ld + ss lc(irpd
) + ss ld(g1g0rpdm

+ g1g0rndm
+ g1g0rpdm

)

sh0 = ss ld (g1g0rpdm
+ g1g0rndm

+ g1g0rpdm
)

The output corrected rounding value or corresponds to the value of by + ry regardless of the

shift. So, or = 0 if by + ry = 0, or = 1 if by + ry = 1 or 2 and or = −1 if by + ry = −1 or −2. To

calculate orp and orn, we can use two intermediary signals rp and rn indicating the value of ry,

rp = ss(la rpa
+ lb rpb

+ lc rpc
+ ld rpd

) + ss(la rpb
+ lb rpc

+ lc rpd
+ ld rpdm

)

rn = ss(la rna
+ lb rnb

+ lc rnc
+ ld rnd

) + ss(la rnb
+ lb rnc

+ lc rnd
+ ld rndm

)

The signals for orp and orn are mutually exclusive to fit their role as multiplexer select signals in

Fig. B.3. The signal orp is set to 1 if ry = 1 and by is neglected in the case of ss = 0 or by = 0. The

other case where orp is set is if ry is not a negative one and by = 1. In boolean logic this translates

to:

orp = ss rp + ss rp(la g + lb h + lc i + ld g1g0)

+ ss rn(la g + lb h + lc i + ld g1g0)

Similarly, orn is set to 1 if ry = −1 and by is neglected in the case of ss = 0 or by = 0. The second

case where orn is set is if ry is not a positive one and by = −1 (g1g0 = 11) or by = −2 (g1g0 = 10).

The third case is if ry = 1 and by = −2. In boolean logic this translates to:

orn = ss rn + ss rn(la g + lb h + lc i + ld g1g0)

+ ss rp ld g1

+ ss rp ld g1g0

With the values of sh4 to sh0, orp and orn the multiplexers of Fig. B.3 shift and choose the
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Figure B.4: Multiplying the rounding parts of the two operands.

correct positive and negative outputs as seen in the top left part of the figure.

The calculation of the special correction (bx + rx)(by + ry) is done in a similar fashion as shown

in Fig.B.4. The same correction block described above is used at the top left for operand X and at

the bottom left for operand Y . The logic gates in the center left of the figure determine that the

result is positive if the output corrected rounding values of both X and Y are of the same sign. The

result is negative if those values are of opposite sign. The multiplexers followed by the NOR gates

at the right then set the correct bit.3

3Those multiplexers have complemented outputs, that is why NOR gates are used.



APPENDIX B. ROUNDING LOGIC 104

B.3 Rounding conclusions

Due to the redundancy, the rounding location may shift by one bit depending on the signed sticky

of the part below the leading bit of the number being rounded. Since the generation of this signed

sticky depends on all the bits of the number, it is slow. Special attention is given to optimize the

speed of the hardware given the slow signed sticky by speculatively calculating different possibilities

for the rounded LSD. Once the exact rounding location is determined the corresponding rounded

LSD is chosen. For the multiplier, the generation of the rounding correction is explained and an

efficient implementation is presented.



Appendix C

Implementation details of the

adder

The proposed design with the four IEEE rounding modes is implemented at the transistor level

using a scalable CMOS technology with n = 53, f = 3 and r = 4.

The circuits mostly use static CMOS technology gates with only few parts using NMOS pass

transistors (namely the shifters). The schematic entry tool sue is used to describe the circuit

connections and the design is simulated for functionality at the logic level using verilog and for

speed at the transistor level using the switch level simulator irsim.

Since the signed digit addition is a fundamental component included in a number of the other

parts, its implementation is described first followed by the details of all the floating point adder.

C.1 SD adder block

Let the i-th digits of the two input operands be denoted by xi and yi. For each position i, the position

sum pi, the carry out of this position ci, the intermediate sum wi and the final sum si are calculated

according to the following rules to insure an addition free from carry-propagation [26, 27, 28]:

pi = xi + yi

ci =















−1 if pi ≤ −α

1 if pi ≥ α

0 otherwise

wi = xi + yi − βci

si = wi + ci−1

105
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Using β = 16 and α = 15, the ranges for these different quantities are:

xi, yi, si ∈ {−15, · · · , 15}
pi ∈ {−30, · · · , 30}
wi ∈ {−14, · · · , 14}

To represent the range of digits chosen, xi and yi are both 5 bits and pi is formed using a

normal 5 bit two’s complement binary adder. If xi and yi are of different signs then their addition

cannot generate a number larger in magnitude than 15 and no carry would be generated except if

the magnitude of the result is exactly 15. If they are both positive, a carry of 1 is generated if the

two’s complement adder overflows (sum greater than 15) or if the sum is exactly 15. In this case of

overflow, both xi and yi have their MSB 0 and the MSB of pi is 1. To form wi from pi, we need

to subtract β × ci = 16 × 1. This is equivalent to inverting the MSB of pi from 1 to 0. If pi is

exactly 15 (01111 in binary), then subtracting 16 to form wi results in wi = −1 (11111 in binary).

Again, the difference between wi and pi is just in the complemented MSB. Similarly for the case

where both xi and yi are negative, if an overflow occurs or if pi is equal to exactly −15 (10001 in

binary), then wi is the same as pi except for a complemented MSB. If α is chosen to be less than

β − 1 then comparisons with more numbers (15, 14, · · · , α and −15,−14, · · · ,−α) would be required

and a more involved scheme must be used for the calculation of wi. This is why the decision is to

use α = β − 1 = 15.

A five bit adder is thus used to calculate pi. Let us assume that the bits representing pi are

pi4 , pi3 , · · · , pi0 and that the carry into the MSB of this adder is c4 and the carry out of it is c5.

Further, ci can be represented by two bits; ci(1) = 1 if ci = 1 and ci(−1) = 1 if ci = −1, if ci = 0

then both bits are set to 0. Similar to pi, wi is represented by 5 bits. Then, si could be calculated

as wi + 00001 if ci(1) = 1 or wi + 11111 if ci(−1) = 1 or simply as wi when both are zero. Instead of

making this two steps process (first wi then si), it is worth noting that

si = wi + ci−1

= (pi − rci) + ci−1

= (pi + ci−1) − rci

This means that the correction needed to get wi4 from pi4 can be delayed till after adding the

carry in of ±1. We can thus have xi + yi + 1 and xi + yi − 1 calculated in parallel with xi + yi

and use a multiplexer with select lines depending on the carry into the digit. After the selection,

the MSB of the result could be conditionally inverted to get the correct si4 depending on the carry

out of the digit. Otherwise, the inversion can be made first and then the multiplexer is used. This

latter method is what is actually used in the implementation as presented in Fig. C.1 where the
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Figure C.1: Calculation of the possible outcomes for one digit addition.

signal no-cpm1 is an indicator that no carries occurred. If this indicator is low (meaning that a

carry occurred), it insures that the most significant bit of the three outputs is inverted.

The boolean equations governing ci(1), ci(−1) are derived based on a few facts:

1. ci(1) is set in case of a positive overflow or a result equal to +15. Both of these can only occur

if xi4 = yi4 = 0.

• The adder calculating xi + yi + 1 has a positive overflow if xi + yi ≥ 15.

2. ci(−1) is set in case of a negative overflow or a result equal to −15.

• A zero input is represented by the pattern 00000 which is considered positive and an

output of −15 can result due to one input being −15 and the other zero or both inputs

negative and their sum equal to −15.

• With the current choice of number system the case of one of the inputs being −16 is a

don’t care condition.
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Figure C.2: Three consecutive digits in a signed digit adder.

Hence, if c′4 is the carry into the MSB of the adder calculating xi + yi + 1 then

ci(1) = xi4yi4
c′4

As for ci(−1), its equation should have three terms. The first one checks for a negative overflow when

both inputs are negative (xi4 = yi4 = 1). The second term checks if the sum is exactly −15 and

either both inputs are negative or at least one of them is negative. The third term checks if the sum

is exactly −16 and either both inputs are negative or at least one of them is negative (allowing for

the don’t care case of a −16 + 0). Hence the equation becomes:

ci(−1) = xi4yi4pi4
+ (xi4 + yi4)pi4pi3

pi2
pi1

pi0 + (xi4 + yi4)pi4pi3
pi2

pi1
pi0

which could obviously be simplified further and written in terms of the individual bits of xi and yi

to improve the time delay.

In Fig. C.1, ci(1) is calculated within the block evaluating xi + yi + 1 and shown as the signal

named cp1 while ci(−1) is calculated in the block evaluating xi + yi and shown as the signal named

cm1. With these carries, a multi-digit adder can be built as shown in Fig. C.2 and this block can

be used to build even bigger structures in the floating point adder.
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C.2 Details of the floating point adder

The general view of the floating point adder is shown in Fig. C.3 while Fig. C.4 shows the cancellation

path. The adder at the top of Fig. C.4 produces four results A − B, A − shift(B), B − A and

B − shift(A). Each of those is represented by two buses one for the extra negative valued bits and

one for the positive bits. Depending on the speculation from the low order bits of the exponent,

either the shifted version or the non-shifted version is chosen using the 16 digits multiplexers. The

LDD takes its input from the A − B branch and decides on the normalization shift amount. That

amount is forwarded to two shifters, one for the A − B branch and one for the B − A. The LDD

forwards the shift amount also to the block deciding the exponent of the output in order to subtract

the shift amount from the exponent of A.

Rounding is done in the cancellation path in parallel with the subtraction step. The rounding

of the proposed format does not propagate a carry through the whole number as the rounding in

conventional adders do. SD addition is used instead and the addition of a ±1 digit representing

the rounding decision is easily handled. The adder of the cancellation path is detailed in Fig. C.5.

The two operands in this figure are labeled as x and y and the upper half of the figure produces

x− shift(y) and x− y while the lower half produces y− shift(x) and y−x. On the left, two blocks

are responsible for correctly rounding the least significant digit of each of the two operands. This

rounding circuit is the same circuit explained earlier in section 4.2.2. The carry out of this circuit

to the next significant digit from both operands is forwarded to the block in the middle of the figure

labeled cx− cy. This block calculates the mathematical value of those carries when subtracted from

each other giving a result going from −2 to +2 as presented in Fig. C.6. That result is then provided

to the two circuits calculating x − y and y − x to the right of Fig. C.5.

In the x− y block, the rounded least significant digits are subtracted as shown in the bottom of

Fig. C.7. According to the SD addition rules the least significant digit subtraction can generate a

carry to affect the next higher digit. It is this next higher digit as well that receives the result from

the block cx − cy of Fig. C.6 calculating the difference of the carries. Hence, in the subtraction of

the next higher digit, the result of the subtraction plus or minus up to three is produced. Then, the

result of Fig. C.6 (difference of the carries) as well as the carries generated from the least significant

digit stage are used to choose the correct answer. For the rest of the digit positions only up to plus

or minus one of the result is produced and the corresponding carries are used to choose the correct

result.

Going back to Fig. C.4, we see that the speculative signal diff1 indicating an exponent difference

of one is an output of the cancellation path. A block is located at the bottom of the path to use

the output of the LDD and decide if a cancellation occurred or not. This block also decides on the

sign of the result and whether it is an exact zero. All these signals are forwarded with the results of

the cancellation path to the multiplexer choosing between the far and cancellation paths as shown

in Fig. C.8.
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Figure C.6: Subtracting the carries in the cancellation adder.
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Figure C.7: Subtracting the operands in the cancellation adder.
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Figure C.8: Multiplexer choosing between the far and cancellation paths.
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The logic at the bottom of Fig. C.8 indicates that the cancellation path is chosen if all the

following conditions are satisfied:

1. It is a true subtraction.

2. The exponent difference is zero or one.

3. A cancellation occurred or the exponent difference is not one (i.e. it is zero.)

These are the same conditions stated in section 4.2 that allow the cancellation path to be free from

any logic to produce the guard and sticky digits. If the cancellation path is chosen then depending

on the sign of the result in that path (indicated by the signal neg) either the positive or the negative

result is enabled.

Due to normalization, the result of the far path can be shifted left or right by one digit location.

The far path produces the three possible outputs and if the far path is chosen one of these outputs is

enabled as seen in Fig. C.8. The significand multiplexer in the figure is then a five to one multiplexer

that chooses the correct output.

The schematic of the far path is shown in Fig. C.9. At the top of the figure, the signed sticky of

the two operands is evaluated and then used in the blocks for rounding.

Two rounding blocks are used to simultaneously negate their outputs. Each operand is actually

rounded and negated so that both the positive and negative alternatives are available to choose

from in case of an effective subtraction operation indicated by the signal t-sub. The difference

between “positive” and “negative” rounding blocks is shown in Fig. C.10. Basically, each digit is

negated and the rounding of the least significant digit also produces the negative value. In this

manner both rounded operands and their negatives are available by the time the exponent difference

and multiplexer selection signals are ready. If, in another implementation, the exponent difference

calculation takes a long time, the alignment shifting could also be overlapped with it in order to

decrease the delay. In such a case two shifters will be needed and the choice of the “smaller” operand

will be done after the shifting.

In the implementation at hand, depending on the sign of the exponent difference, one of the

operands is chosen to be shifted. However, it is only the least significant bits of the difference that

really determine the shift amount. If the shift amount is larger than the width of the operands then

there is no need to shift the lesser operand and a zero can be added to the larger operand. The

detection of this condition is done by the block labeled g15. In the presented scheme, only the least

4 bits are enough to represent a shift amount of 14 digits (the width of the operand). The subtracter

of the exponents takes the two operand’s exponents consisting of 15 bits each and computes Ae −Be

by adding the two’s complement of Be to Ae. In parallel to that a second subtracter works on 4 bits

only to produce the least significant part of Be − Ae which is then fed to a multiplexer with the

least significant part of Ae −Be. Since the two exponents are unsigned numbers, it is the carry out

signal that determines the sign of the difference according to two’s complement number addition
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Figure C.10: Rounding blocks in the far path.
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rules. If carryout = 1 then it is a positive difference (Ae ≥ Be) and if carryout = 0 then it means

that Ae < Be. The sign of the difference constitutes the swapping signal that decides which operand

goes directly to the adder and which one is fed to the alignment shifter. The swapping signal also

decides on the correct shifting amount to use (either that of Ae − Be or that of Be − Ae).

The shifter is made wider than the operands in order to accommodate the guard and round

digits. Any further digits that are shifted out are used to calculate the sticky digit. If the exponent

difference is greater than 15 then all of the operand is shifted out and a multiplexer is used to select

a zero value as the second input to the adder. For this, the result of the block checking if the

exponent difference is larger than 15 is used. If the outputs of the exponent subtracter are labeled

d14 (most significant bit) to d0 (least significant) and the difference is positive (carryout = 1) then

the condition is:

> 15pos = d14 + d13 + · · · + d5 + d4

If the difference is negative (carryout = 0) the condition to check should be done on the two’s

complement of the difference, or alternatively on the one’s complement but checking for > 14 to

account for the additional 1 of the two’s complement. Hence the condition becomes:

> 15neg = d14 + d13 + · · · + d5 + d4 + (d3d2d1d0)

The complete block then generates the output named g15 which is given by g15 = carryout(>

15pos) + carryout(> 15neg) as shown in Fig. C.11. In this same block, a check is made to see if the

exponent difference is less than two (i.e. either zero or one). The logic at the bottom of Fig. C.11 is

responsible for that.

The sticky digit is calculated from the outputs of the rounding blocks. For each digit at position

i denoted by the bits x4x3x2x1x0, we evaluate zi = x3 +x2 +x1 +x0 and ni = x4. These two values

indicate if the digit is non-zero (zi = 1) and if it is negative (ni = 1). According to the number

system used, since a digit can never have the value of −16 then the case of ni = 1 and zi = 0 is not

possible. Since two digits are needed for G and R then the number of digits counted from the LSD

that are used to determine the sticky value is equal to the exponent difference minus 2. For each

of those digits, an enable signal, ei, is set to 1. The enable is set to 0 for all the other digits. The

boolean expressions giving the value of those enables are as shown in Table C.1. In the table, the

digit designated as LSD−1 is the digit formed by the rounding logic in case the rounding is to the

g0 bit location while the digit designated by MSD+1 is the digit formed by the carry over from the

MSD in the rounding blocks.

As a simplification of Table C.1, an alternative solution is to drop the g15 term from the equations

and to proceed with the evaluation assuming g15 = 0. In parallel a sticky digit including all the

digits of the number can be evaluated and then a multiplexer whose select line is g15 can be used to

select the appropriate sticky. This is, in effect, the scheme used in this implementation as illustrated
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Figure C.11: Logic for checking the complete shift of the lesser operand. The lower part checks if
the exponent difference is less than two.

Table C.1: Enable values for the Sticky digit calculation.
LSD−1 g15 + d3 + d2 + d1

LSD g15 + d3 + d2 + d1d0

g15 + d3 + d2

g15 + d3 + d2(d1 + d0)
g15 + d3 + d2d1

g15 + d3 + d2d1d0

g15 + d3

g15 + d3(d2 + d1 + d0)
g15 + d3(d2 + d1)
g15 + d3(d2 + d1d0)
g15 + d3d2

g15 + d3d2(d1 + d0)
g15 + d3d2d1

g15 + d3d2d1d0

MSD g15

MSD+1 g15
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by the multiplexer below the sticky generation block in Fig. C.9.

Thus the final values of zi and ni are given by:

zi = (x3 + x2 + x1 + x0)ei

ni = x4ei

Then these zi and ni are used to deduce two signals z and n indicating if the digits shifted out

represent a non-zero value and whether it is negative or not. The value is non-zero if any of the

digits (after the enable signal of course) is non-zero and it is negative if the MSD is negative or the

MSD is zero and the second MSD is negative or both are zero and the third MSD is negative, . . .

z = z0 + z−1 + z−2 + z−3 + · · ·
n = n0 + z0n−1 + z0z−1n−2 + z0z−1z−2n−3 + · · ·

This is the same priority encoder that was presented in Fig. B.2.

The last major component of the far path is the adder shown in Fig. C.12 which provides three

possible shifted versions of the output. The shifting for normalization in the far path is by at most

one digit location to either the left or the right and is performed by re-wiring the signals. At the

bottom of the figure the block labeled G, R, S evaluates three possibilities for the guard, round and

sticky digits corresponding to the three possibilities for the normalization shift. That block is shown

in Fig. C.13.

This adder in the far path needs to insure that at most one bit location shift is required in

the rounding stage. The problem of shifting to a location more than one bit away arises if the

MSD is equal to 1 and the following lower order digit is negative. If an N-recoding is used at

the MSD location and then the resulting number checked for normalization that would solve the

problem. With such a recoding the 1 is canceled if it is followed by a negative digit and the number

is left shifted by one digit in the normalization. The block calculating the most significant digits

in Fig. C.12 has two N-recoders for the two most significant digits as seen in Fig. C.14. The logic

deciding whether or not a normalization shift is required and its direction appears in the top left

corner of Fig. C.12. This logic operates on the outputs of the adder after the N-recoding.

C.3 Conclusions

Learning about the use of the design tools and starting the design implementation took less than

a month. Completing this large design (125 238 transistors) and correcting all the mistakes that

were discovered along the way took much longer. Slightly over six months were needed to finish all

the implementation details of the adder. That includes the time for insuring the logical correctness

and the speed simulations. Building small modules and reusing those modules in larger structures
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Figure C.12: Adder of the far path.
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Figure C.13: Evaluation of the guard, round and sticky digits in the far path.

helped greatly in speeding the process. The cancellation path was done in just over a month because

it reuses a large number of the smaller components from the far path which was finished first. The

final outcome is an adder faster than conventional designs and capable of performing all the IEEE

rounding modes.
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Figure C.14: N-recoding in the most significant part of the far path adder.



Appendix D

Implementation details of the

multiplier

Similar to the floating point adder, the proposed design for the multiplier with the four IEEE

rounding modes is implemented at the transistor level using a scalable CMOS technology with

n = 53, f = 3 and r = 4. The schematic entry tool sue is used to describe the circuit connections

and the design is simulated for functionality at the logic level using verilog and for speed at the

transistor level using the switch level simulator irsim.

Fig. D.1 shows the schematic diagram of the floating point multiplier. The recode Y block to

the left does the Booth recoding, chops Y at the rounding location and provides the information

necessary for correctly rounding Y to the partial product tree (PPT ) block to its right. The block

labeled Prepare X at the top chops X , produces mX and the information required for correctly

rounding X . After the PPT, a [4 : 2] compressor is used and then the final adder.

D.1 Basic blocks

Two important basic blocks repeatedly used are the [4 : 2] compressor and the partial product

multiplexer. The design of the [4 : 2] compressor is shown in Fig. D.2. As the parametric model

presented earlier predicts this unit takes approximately 3 FO4 gate delays. The compressor is used

in the form of a row with possibly simple half adders or full adders to sum the partial products. The

need for half adders or full adders arises at the edges due to the relative shift between the partial

products. An example with a 58 bit wide row of compressors is shown in Fig. D.3.

This row is the one used to sum the positive vectors of four consecutive partial products as

illustrated by Fig. D.4. On the other hand, the negative vectors are sparse vectors and can be

combined together by wiring the bits in the correct location without any hardware to sum them as
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Figure D.1: Schematic of the floating point multiplier.
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Figure D.3: A 58 bits row of [4 : 2] compressors.

seen at the bottom right of the figure. This Fig. D.4 actually gives out the result of multiplying

the chopped X by two digits of Y recoded as the signals two[3 : 0], one[3 : 0], m − one[3 : 0] and

m − two[3 : 0] coming from the left direction.

The block labeled PPmux 15D in Fig. D.4 is an array of the basic partial product multiplexer

shown in Fig. D.5. Depending on the selection signals coming from the recoded Y , the multiplexers

choose either X or mX or their shifted versions. The individual multiplexers used are a simple

implementation of the boolean relation out = AselA+B selB +C selC +D selD as shown in Fig. D.6.

If all the selectors are low the output is low indicating a value of zero. With the use of these

multiplexers, the Booth recoding of Y can be made simpler as indicated in Fig. 5.2 where there is

no need to generate special signals for ±0.

D.2 Details of the floating point multiplier

As mentioned earlier, in Fig. D.1, the block labeled prepare X is responsible for generating mX .

Two minor properties must be noted:

1. (−X)chopped 6= −(Xchopped). For example, let the LSD of X be 0 0110 = (6) and let it be

chopped to become 0 0100 = (4). The negative of the original LSD is 1 1010 = (−6) and if it is

chopped at the same location the result is 1 1000 = (−8). Obviously this is not representative

of the chopped X . Hence, there is a need to decide on the cutting location first and then

negate the number.

2. If by chopping X a digit equal to 1 0000 = (−16) is produced then the corresponding negated

digit is +16 but the simple rules of negation produces 1 0000 = (−16). The solution imple-

mented here is to give an mX LSD of all zeros in this special case and then later apply a

special correction for every time mX is used.

The details of the prepare X block are shown in Fig. D.7. The top right determines the leading

one in the MSD, the top middle produces the signed sticky for X to correctly round it using the
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Figure D.7: The preparation of mX .

signals buffered at the middle right. The bottom left is for chopping X and generating near the

middle of the figure a signal labeled corr-mx to check for the special case of a chopped LSD equal

to −16. The bottom right side is for negating X and buffering mX .

The signal corr − mx is used in the block shown in fig. D.8 to enable a compensation constant

for each time the Booth recoder produced a minus one or minus two output. Basically, for the case

of m− one, a sparse vector is formed with a bit equal to one if corr−mx = 1 and the corresponding

m − one bit from the Booth recoder is also one. Similarly for the case of m − two but the second

sparse vector is one bit shifted relative to the first sparse vector. They are both then combined by

wiring them to the correct bits of the output.

The correction for the use of mX is then delivered to a unit handling the addition of the two

rounding corrections from (bx + rx)Ychopped and (by + ry)Xchopped to one of the partial products as

presented in Fig. D.9 where the bottom left two blocks represent the circuit described in Fig. B.3.

The unit in Fig. D.9 is then combined with that of Fig. D.4 to form the top module to the left of

Fig. D.10. The module labeled corr-rxry in the top middle of the figure is the one already presented
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Figure D.10: The complete partial product tree.

in Fig. B.4 to produce the correction for (bx + rx)(by + ry). This correction does not involve any

high significance digits and hence it is guaranteed to be at the lower significant portion of the final

result of the multiplier. On the other hand, any of the [4 : 2] compressors has an empty range of

bits at the lower significance due to the shifting of the higher order partial products. The positive

and negative outputs of that correction block are thus easily included in the positive and negative

compressors directly below it as shown in the middle of Fig. D.10. The relative shift between the

different partial products is noted in the bottom right part of the figure. These shifts are reported

relative to the first partial product which has the lowest significant bits.

Due to the relative shift, the outputs of the partial product tree module are padded with zeros as

was shown to the lower left part of Fig. D.1 before summing them in the inverting [4 : 2] compressors

row. That row of compressors complements the vectors corresponding to the negative sum (nc and

ns in the figure) and adds them to the vectors of the positive sum (pc and ps). An extra one is added

at the least significant side as the carry into the row as shown in Fig.D.1. However, to correctly

provide the two’s complement of the two negative vectors an additional one should be added for
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each of them. With the current implementation, the carry and sum bit vectors resulting from the

compression are equal to pc + ps − nc − ns − 1. This negative one is intentionally left to facilitate

the calculation of the sticky digit.

The sticky digit calculation in multipliers is done in a number of ways: [77, 73]

1. The simplest conceptually is to implement a complete carry propagation adder for the lower

half of the result and then use a logic tree of gates to form a large OR gate for all the bits of

that lower half. Each of those two steps is an O(log n) operations and hence if they are done

in sequence the circuit is quite slow.

2. The sticky digit can be evaluated directly from the inputs by counting the number of trailing

zeros in each operand and adding them to find the number of trailing zeros in their product.

This method is correct for any representation in which the base β is a prime number that

cannot be factored. Our case here has a non-prime base β = 16. If, for example, the least

significant non-zero digits in the operands are 2 and 8 then an additional zero is generated.

The number of trailing zeros in the product is larger than the sum of the number of trailing

zeros in both operands.

3. Another method to find the sticky digit from the partial product bits exists. It depends on

having all of the partial products as positive numbers and not using the Booth algorithm. In

that method, the logical OR of all the bits of the partial product array below the rounding

bit is evaluated to give the sticky bit. This method works when all the partial products are

positive because the first column in the partial product array yielding a non-zero result is

proved to contain at most a single 1 [77]. Since in our floating point multiplier Booth recoding

is used, this method cannot be implemented.

4. An improvement on the previous method to allow the use of Booth recoding was suggested by

Bewick [73]. Basically, we want to know if the result of adding the sum and carry bits of the

lower part of the product is exactly equal to zero or not. If the two bit vectors constituting

the part of the sum and carry being checked are called A and B then we want to check if

A+B = 0. Alternatively, we can check for A+B−1 = −1 = (111 · · · 11111)β=2. If a constant

equal to −1 is injected somehow in the partial product compression, we get at the end two bit

vectors to which we need to add +1 to get the correct result. However, getting the sticky is

now equivalent to evaluating the logical XOR at each bit position of the two vectors followed

by calculating the logical NAND of all those XOR outputs. This last method is in fact a

special case of checking for A + B being equal or not to some constant K [83, 84] and can be

used with some modifications in our design.

Only the first method of evaluating the sticky digit requires the actual computation of the sum

of the lower portion of the product. In the last three methods, the hardware doing that computation
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Figure D.11: The final adder of the multiplier.

can be eliminated. The only required hardware is the gates needed for generating the sticky digit

as well as any potential carry into the higher remaining part from the truncated lower part. But,

before explaining the implementation of the sticky digit, let us first introduce the details of the final

adder since a good understanding of the normalization issues is necessary to explain the sticky digit

calculation.

Fig. D.11 shows the final adder of the multiplier. The bottom part is for the evaluation of

the sticky digit while the middle part is the SD adder and the top is the signals checking for

normalization.

Each digit of the SD adder is implemented as shown in Fig. D.12. The simplicity of this circuit

should be contrasted to the corresponding circuit in the floating point adder shown in Fig. C.1.

This simplicity is the reason for the lower estimation for the time delay of this adder as described

in section 5.3.

The normalization logic at the top of Fig. D.11 depends on the following Lemma.
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Figure D.12: One digit of the final adder of the multiplier.

Lemma D.2.1 The normalization in the floating point multiplier can be by at most one digit to the

left or one digit to the right.

Proof: The operands X and Y of the multiplier are normalized numbers and the minimum value of

the MSD is thus 1. The condition required for the rounding logic to shift by only one bit location

insures that the operands cannot be of the form 1 (−ve) · · ·. However the operands can have the

MSD equal to 1 and the rest of the significand being a negative number as in the form of 1 0 (−ve) · · ·.
On the other hand, the maximum value of the MSD is 15. Hence, the value of the operands lies in

the range [1 − ε, 16[ where ε is a small positive number less than 16−1. The product of two such

values is in [1 − δ, 256[ where δ is derived from multiplying the least possible operands.

(1 − ε)(1 − ε) = 1 − 2ε + ε2

So, δ < 2 × 16−1 and the minimum value of 1 − δ is then larger than 1 − 2 × 16−1.

If the value of the product is in [16, 256[ one digit right shift reduces it to the required range for

normalized numbers. If the value of the product is in [1−2×16−1, 1[ one digit left shift is enough to

normalize it. Otherwise, the value is in [1, 16[ and the product is already normalized with no need

to shift it. �
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Figure D.13: The N-recoding in the most significant digits of the final adder.

In the proof, the value of the product is equivalent to the value of the non-redundant represen-

tation. However, the SD adder produces a redundant representation. It is that representation that

is checked. Also, if this representation has an MSD of 1 and a following digit that is negative an

N-recoding must be used to insure the property of normalized numbers needed for the rounding as

shown in Fig. D.13 representing the most significant part of the adder of Fig. D.11. The multiplexers

to the right of Fig. D.11 use the shifting signals to select the correct output for the multiplier.

In calculating the sticky digit, note that the lower part of the product arrives at the final adder

stage before the higher part of the product. This fact has been documented [60, 76] and exploited

to implement fast yet simple final adders for conventional multipliers. That fact is also exploited

in this implementation. Since the last [4 : 2] compression stage before the final adder introduced a

negative one into the product, an extra positive one must be added to the lower part to compensate

it. Because of the early arrival of the lower parts of the sum and carry bit vectors, a simple ripple

carry chain is enough to get the carry out of adding the lower parts of both vectors as well as the

extra positive one. In fact three carries are generated from this ripple carry chain corresponding to

the three possibilities for normalization as shown at the bottom of Fig. D.14. The left part of the

figure is a tree of XOR gates followed by a logical NAND to evaluate the sticky bit as explained

above. Three stickies corresponding to the three possibilities of normalization are also calculated.
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Figure D.14: Evaluation of the guard, round and sticky digits.
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Since both x and y are in {0,..,15} the interim sum is in {0,..,30}
If it is 15 or more we subtract 16 which result in sum in {−1,..14} 
Sum plus one is then always in {0,..15}
Hence bit4 of sum plus one is always 0

Figure D.15: The special adder for the sticky digit calculation.

The three possible carries and the three possible stickies are forwarded to the blocks at the top

right of Fig. D.14 to evaluate, for the three possibilities of normalization, the digit representing the

guard, round and sticky digits. Each of those blocks is implemented as shown in Fig. D.15. It is a

special adder that adds the sum and carry bits corresponding to the digit directly below the LSD

of the final product. In effect, it adds them assuming a carry into this digit of +1 then uses the

actual calculated carry and sticky bit representing all the bits below this digit to adjust the result.

In the figure, the preliminary result of the sum of the inputs plus one is labeled pp1in and the

actual result is p[4 : 0]. Referring back to the nomenclature of the rounding logic (section 4.2.2),

p[4] = g1, p[3] = g0, p[2] = r, p[1] = s1 and p[0] = s0. The adjustment occurs only in the two

least significant bits corresponding to s1 and s0 as seen from the lower right portion of the figure.

Simply, the resulting sticky is equal to 0 (s1s0 = 00) if the incoming sticky from the lower bits is zero

and both of the least significant bits of pp1in are also zero. If the incoming sticky is 0 that means

that the logical XOR of all the lower bits evaluates to 1 and the incoming carry must be equal to

1 (remember the extra +1 added at the least significant bit.) The pp1in is calculated taking into

account a carry into the digit equal to 1 so the upper bits of pp1in are correct and represent g1, g0

and r.

If the incoming sticky is zero but either pp1in[0] or pp1in[1] is not zero then the resulting sticky

s1s0 = 01. Once again, the incoming carry must be one and the values of pp1in[4 : 2] correctly

represent g1, g0 and r.
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If the incoming sticky is 1 then the extra +1 added at the least significant bit is not propagated

all the way. A sticky of 1 means that at least one of the XOR gates produces a zero result. The

propagation of the added +1 is stopped at this position where the result of the XOR is zero. The

other positions higher than this one may or may not generate a carry. Hence, the incoming carry can

be either 0 or 1. Remember that pp1in is calculated assuming a carry of one. So, if both the sticky

and the carry are equal to 1, s1s0 is set to 01 and the upper bits pp1in[4 : 2] correctly represent g1,

g0 and r.

On the other hand, if the sticky is 1 and the carry is 0, a more detailed analysis of the possible

combinations for pp1in[1 : 0] is needed while keeping in mind that pp1in is calculated assuming a

carry of 1. This means that we need to compensate for that assumed carry as in the following table:

Calculated Compensated Output

pp1in[1] pp1in[0] pp1in[1] pp1in[0] s1 s0

1 1 1 0 0 1

1 0 0 1 0 1

0 1 0 0 0 1

0 0 0 −1 1 1

The first three lines are easily compensated and since the incoming sticky is one the resulting s1s0

are given as 01. The last line is where a simple trick is used. To compensate the assumed carry we

introduce a negative bit at this location that combines with the incoming sticky to give s1s0 = 11,

i.e. a resulting sticky digit of −1. This trick shows the elegance of working with redundant digits,

you can apply a late correction for an early assumption without the need to redo the computation:

the bits pp1in[4 : 2] once more correctly represent g1, g0 and r.

This long derivation of the sticky digit leads at the end to the simple logic gate implementation

shown at the bottom right of Fig. D.15.

D.3 Conclusions

A three months period was needed to complete the full design of the multiplier. This is half the

design time of the adder despite the fact that the muliplier is larger (209 732 transistors versus about

125 238 transistors for the adder.) The reuse of a number of parts from the adder as well as the

repetitive structure of the [4 : 2] compressor rows helped to cut down the design time. Those three

months include the period used for checking the correctness of the Verilog model as described in

section 5.4 as well as the timing simulations.
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