Algorithmic Truncation of MiniMax Polynomial
Coefficients

Sherif A. Tawfik * and Hossam A. H. Fahmy |
Electronics and Communications Department, Faculty of Engineering, Cairo University, Giza, Egypt, 12613.

Abstract— Elementary and high-level functions can be com-
puted in hardware using polynomial approximation techniques.
There are many techniques in the literature to calculate the
coefficients of such polynomials. Remez algorithm [1] provides
the optimal polynomial in the Chebyshev sense that is minimizing
the maximum error (minimax approximation).

This paper presents an algorithm for truncating the coefficients
of the minimax polynomials obtained from Remez algorithm
using an algorithmic method. A gain of 3 and 4 bits of accuracy
over the direct rounding is reported.

Muller [2] addressed the same problem but his algorithm is
applicable for the second order polynomials only. This paper
presents an algorithm that is applicable for any order.

I. INTRODUCTION

The computation of elementary functions in hardware is
performed by three steps. The first step is called argument
reduction. Argument reduction maps the given argument into
another argument that has a reduced range. The second step
approximates the function at the reduced argument. The third
step is the reconstruction step where we compute the function
at the original argument from the approximated value of the
function at the reduced argument.

The range reduction and reconstruction steps are related and
they are function-dependent. There is no single reduction and
reconstruction technique that is applicable to all functions. The
modular reduction is a popular technique. It is applicable for
example to the exponential and sinusoidal functions.

The hardware algorithms for approximating functions fall
into four broad categories: the digit recurrence [3]-[5], the
functional recurrence [6]-[8], the polynomial approxima-
tion [2], [7], [9]-[16], and the rational approximation [17].

Each of these categories has some design parameters that
need to be set in order to achieve the desired precision at
the lowest cost. The cost is either a function of the area, the
latency, the power consumed, or any combination of the three.
The type of the cost function determines the category that we
should employ.

In this paper we are concerned with the polynomial ap-
proximation implemented in the parallel architecture. Remez
algorithm [1] provides the best polynomial approximation. To
minimize the hardware, we aim at truncating the coefficients
of the approximating polynomial using an algorithmic method
instead of rounding. We model the problem in the form of a

* Currently at ECE department, University of Wisconsin-Madison, USA.
Currently at the School of Computer Engineering, Nanyang Technological
University, Singapore.

mixed integer linear programming problem and solve it using
the branch and bound algorithm.

The rest of the paper is organized as follows. Section II
presents a review of Remez algorithm. Section III presents
our truncation algorithm. Section IV presents the parallel
architecture and the usefulness of our truncation algorithm in
regard to this architecture. Section V presents the results and
comparison. Finally conclusions are given in section VI.

II. REVIEW OF REMEZ ALGORITHM

Remez algorithm is an iterative algorithm. It aims to find
the coefficients of the approximating polynomial such that the
maximum error is minimized.

We denote the function that we need to approximate by
F(X) where the argument X € [a, b]. We denote the approx-
imating polynomial of order n by P, (X) such that P, (X) =
co+c1 X +cX?+. .. 4 ¢, X" We define the error function
by e(x) = F(X)— P,,(X). The algorithm has two main steps:

The first step is to select (n + 2) points in the given
interval. We denote these points by Xy, X1,..., X,+1 such
that ¢ < Xy < X1 < ... < Xp41 < b. Then we force the
error function to take the same magnitude at these points with
alternating sign.

The second step is to exchange some or all of these (n+2)
points by other points in the interval such that we approach
the required optimal polynomial. There are two exchange
techniques. The first technique exchanges a single point every
iteration while the second technique exchanges all points every
iteration.

These two steps are repeated several times until the dif-
ference between the new and old point(s) becomes less than
a given threshold. A detailed description of these two steps
follows:

First step: we force the error at the (n + 2) points to be
equal in magnitude, denoted by E and to have alternating sign.

e(Xm) = F(Xm) - Pn(Xm) = (_1)7”/E
F(Xm) = (co+ 1 Xm+ ..+ enX?) = (=1)"E
m=0,1,...,n+1 (1)

Equation 1 is a system of (n+2) linear equations in the (n+
2) unknowns: {cg, c1, ..., cn, E}. These (n+2) equations are
independent [1] therefore there is one unique solution which
can be obtained using any algorithm from linear algebra. By
solving this system of equations we determine the coefficients
of the polynomial and the magnitude of the error at the (n+2)
points.

Markers:
* :0ld Points
o : New Points

e(X)

Fig. 1. Tllustration of the second step of Remez algorithm for a third order
polynomial.

Second step: since the error function e(X) has an alternat-
ing sign at the the (n+ 2) points that we used in the first step
therefore the error function crosses the x-axis (n+1) times. We
calculate the points at which e(X) = 0 using a suitable root-
finding algorithm and denote these points by Zy, Z1, ..., Z,.

We then divide the given interval [a,b] into the (n + 2)
sub-intervals [a, Zo], [Z0, Z1],[Z1, Z2), . - ., [Zn,b]. In each of
these sub-intervals we calculate the value of X at which e(X)
takes its maximum or minimum value and denote these points
by X§, X{,... X, respectively.

We can calculate the maximum or the minimum of e(X)
in a given sub-interval by calculating the root of ag(_))(() in
the given sub-interval if such root exists. If it doesn’t exist
we calculate e(X) at the end-points of the sub-interval and
choose the one that gives a bigger absolute value for e(X).

We define

k=max|e (X)) m=0,1,...,n+1 2)
m

The single exchange technique exchanges X, with X}'. The
multiple exchange technique exchanges { X, } with { X} } for
all m = 0,1,...,n + 1. Figure 1 illustrates the second step
graphically for a third order polynomial approximation in the
interval [0, 1]. To start the algorithm the first set of points are
chosen arbitrarily.

The algorithm is proved to converge to the optimal polyno-
mial at which the error function reaches its absolute maximum
value (n + 2) times with alternating sign [1].

III. THE TRUNCATION ALGORITHM

In real hardware, numbers have a finite precision. The area
of hardware multipliers decreases if we further constrain the
precision of the coefficients in the optimal polynomial. How-
ever, such constraints affect the accuracy of the approximation.
Our goal is to find an algorithm to constrain the coefficients
while having the least effect on the accuracy.

First we run Remez algorithm until we reach the optimal
polynomial then we repeat the last iteration with two modifica-
tions. The first modification is in the first step of the Remez al-
gorithm. We formulate the first step as a Mixed-Integer Linear

Programming (MILP) problem and add precision-constraints
to all the coefficients except ¢y and then solve it using the
branch and bound algorithm. The second modification is in
the second step of the Remez algorithm. After we compute
the locations of the local extrema {X} we determine the
maximum and minimum values for the error function e(X).
We then add the average of these two values to ¢g in order to
make the error exactly centered around the origin. The reason
why we don’t constrain the precision of ¢ is because it is
not an operand to a multiplier as we see in the following
section. Note that we can determine the maximum error of
the approximation numerically from the second step of Remez
algorithm.

We formulate the first step (Equation 1) of Remez algorithm
as a Linear Programming (LP) problem by subtracting a non-
negative variable s,, from the variable E for each equation
and setting the objective function of the LP problem to
minimize the maximum of the {s,,} variables. Since the
{sm} variables are non-negative therefore minimizing their
maximum implies that we minimize them all. We transform
the problem into a standard form by introducing a variable
s and letting s = max (s,,) therefore s > s, for all m.
Equation 1 is reformulated as minimize s subject to:

F(Xn) (co+ a1 Xm~+ ...+ X))
= (=1)"™(E = sm) A3)
sm > 0 (4)
s >0 (5)
Sm < S (6)
m = 0,1,---,;n+1

The optimal solution of this problem occurs at s,, = 0 for
all m and this gives the same solution that we get from solving
equation 1 as a linear system of equations using any method
from linear algebra.

Note that without the {s,,} variables the system has a
unique solution and any new constraint will render the prob-
lem infeasible. The above LP formulation enables us to add
precision-constraints on the coefficients and still get a feasible
solution. After adding the precision constraints the LP problem
becomes an MILP problem as minimize s subject to:

F(Xn) — (co+aXm+...+ceX))
= (_1)"1/(E - Sm) @)
sm > 0 (@)
s >0)
Sm <08 (10)
m = 0,1,---,n+1

c1,Ca,...,Cn have J fractional bits (11)

In this mixed-integer programming problem, we put preci-
sion constraints on all the coefficients except cy. The solution
to this MILP problem gives unequal magnitudes to the error

at the (n + 2) points. However the differences between the
magnitude of the error at the (n + 2) points are minimized.

IV. THE PROPOSED ARCHITECTURE

Polynomial approximation may require a high order for
a given precision. Higher order polynomials implies longer
computation time for the same hardware or larger hardware
for the same computation time. One way to decrease the
order of the approximating polynomial is to divide the given
interval into a number of smaller sub-intervals and compute the
polynomial coefficients for every sub-interval. This solution
comes at a price. We now need a table to store the coefficients
of those polynomials. However this solution has an advantage
in that it gives the designer more freedom to trade-off the size
of the table with the order of the approximating polynomials
and hence the latency of the algorithm or the area of the other
hardware units.

The easiest way for dividing the given interval into smaller
sub-intervals is to divide it into a power of 2 equal sub-
intervals. This method simplifies the hardware implementation.
What remains to fully describe the general architecture is to
describe how we select the coefficients of the polynomial of
the sub-interval in which a given argument lies and how to
evaluate that polynomial from the selected coefficients.

Without loss of generality we assume that the argument
X lies in the interval [0,1] and has the binary represen-
tation [0.z122...24...2g] where z, € {0,1}. We divide
the argument X into two parts Xp; = 0.z122...7, and
Xio =10.00...0xq41 ... 25 such that X = Xp; + Xjo.

If we divide the interval into equal 2% sub-intervals we
can determine the sub-interval in which a given argument lies
by | X x 2%| and this is equivalent to using the bits of X};
without the leading O as an index to the coefficients’ table.
Each entry in that table should hold the coefficients of the
approximating polynomial corresponding to its sub-interval.

We modify Remez algorithm such that the approximating
polynomials are functions in X;, instead of X and the
dependence on Xj,; is accounted for in the coefficients. This
modification is justified because Xj; is constant in all the
points of a sub-interval. Thus the approximating polynomial
has the form P, (X) = co X, + CIX120 + e X

The approximating polynomial can be evaluated in hardware
using truncated powering units [18] and truncated multipli-
ers [19] and final addition. The use of truncated multipliers
and powering units leads to a significant decrease in the
area and the delay of these units. Figure 2 illustrates the
proposed architecture. It is a generalization of the one given
by Muller [2].

In this architecture, we use specialized powering units to
compute the powers of X;,. At the same time we read the
coefficients from a table by using the bits of X;,; as the index.
We then multiply the powers of X, by the coefficients using
parallel multipliers. Finally we sum the results using a multi-
operand adder.

We note that ¢y is not an operand to any multiplier while
each of the remaining coefficients is an operand to a parallel

Multi-operand adder

v

F(X)

Fig. 2. The proposed architecture.

multiplier hence by reducing the precision of the all the
coefficients except cy we reduce the size of the employed
multipliers. Moreover the powers of X;, are small numbers
since X;, < 27% therefore constraining the precision of
the higher order coefficients has less impact on the final
accuracy than constraining co. Therefore we don’t constrain
the precision of ¢y beyond the working precision.

It is to be noted that some coefficients may have leading
zeros or ones depending on their sign. There is no need to
store those leading zeros or ones since they can be obtained
by sign extension. The architecture can be easily pipelined into
two or three stages by using registers.

In the proposed architecture, there is a trade off between
the size of the coefficients table on the one hand and the size
of the powering units and multipliers and their number and
the size of the multi-operand adder on the other hand. After
the functions are specified careful analysis should be carried
out to determine the optimal table size, polynomial order and
the coefficients width in bits such that the required precision
is achieved at the smallest area.

V. RESULTS AND COMPARISON

In this section we present some results of our algorithm
and compare them with the results of Muller’s algorithm for
second order polynomials and with the direct rounding for the
second and higher order polynomials.

Table I lists the error of the three different truncation
techniques namely Muller’s algorithm, direct rounding and our
truncation algorithm for different functions, polynomials order
and coefficients’ precision in bits.

We can deduce from this table that the results of our
algorithm is close to that of Muller’s algorithm. Our algo-
rithm is slightly better for some cases and slightly worse
in others. Muller’s algorithm is applicable only for second
order polynomials hence we compare our algorithm with the

direct rounding for the case of higher order polynomials. It
is clear from table I that our algorithm outperforms the direct
rounding. The gain in precision of the final result reaches more
than 4 bits in some cases.

It is useful here to quickly compare the second order and
third order polynomials for single precision approximation
(the two entries before the last for each function in table I).
Second order polynomials use three coefficients while the
third order requires four coefficients. Hence, the table size
of the third order is one third (£5%1) that of the second order.
This reduction comes at the cost of adding a cubing unit, a
multiplier, and an additional addend in the final adder.

If we need to implement more than one function with
the powering units and multipliers being shared then the
third order polynomials approximation may be more attractive
from the area perspective. On the other hand if we need to
implement one function then the second order polynomials
approximation may be better from the area perspective.

Once the functions that need to be approximated are speci-
fied, a designer should carry a thorough comparison between
the various orders of polynomial approximations.

VI. CONCLUSIONS

Our algorithm outperforms direct rounding in all cases. It
is applicable not just to the second order but also to higher
order polynomials. Using our algorithm, designers have more
options to trade-off area versus speed.

REFERENCES

[1] L. Veidinger, “On the numerical determination of the best approxima-
tions in the Chebychev sense,” Numerische Mathematik, vol. 2, pp. 99—
105, 1960.

[2] J.-M. Muller, “Partially rounded small-order approximation for accurate,
hardware-oriented, table-based methods,” in Proceedings of the 16th
IEEE Symposium on Computer Arithmetic, Santiago de Compostela,
Spain, June 2003.

[3] J. E. Volder, “The CORDIC trignometric computing technique,” IRE

Transactions on electronic Computers, pp. 330-334, Sept. 1959.

J. S. Walther, “A unified algorithm for elementary functions,” in Pro-

ceedings of the AFIPS Spring Joint Computer Conference, pp. 379-385,

1971.

[5] S. K. Jean-Claude Bajard and J.-M. Muller, “BKM: A new hardware
algorithm for complex elementary functions,” IEEE Transactions on
Computers, vol. 43, pp. 955-963, Aug. 1994.

[6] M. J. Flynn, “On division by functional iteration,” IEEE Transactions
on Computers, vol. C-19, pp. 702-706, Aug. 1970.

[71 M. Ito, N. Takagi, and S. Yajima, “Efficient initial approximation and
fast converging methods for division and square root,” in Proceedings
of the 12th IEEE Symposium on Computer Arithmetic, Bath, England,
pp- 2-9, July 1995.

[8] A. A. Liddicoat and M. J. Flynn, “High-performance floating point
divide,” in Proceedings of Euromicro Symposium on Digital System
Design , Warsaw, Poland, pp. 354-361, Sept. 2001.

[9]1 P. T. P. Tang, “Table-lookup algorithms for elementary functions and
their error analysis,” in Proceedings of the 10th IEEE Symposium on
Computer Arithmetic, Grenoble, France, pp. 232-236, June 1991.

[10] D. D. Sarma and D. W. Matula, “Faithful interpolation in reciprocal
tables,” in Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, Asilomar, California, USA, pp. 82-91, July 1997.

[11] N. Takagi, “Generating a power of an operand by a table look-up
and a multiplication,” in Proceedings of the 13th IEEE Symposium on
Computer Arithmetic, Asilomar, California, USA, pp. 126-131, 1997.

[12] D. D. Sarma and D. W. Matula, “Faithful bipartite ROM reciprocal
tables,” in Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, Bath, England, pp. 17-28, July 1995.

[4

=

TABLE I
RESULTS FOR DIFFERENT FUNCTIONS, POLYNOMIAL ORDER (n), NUMBER
OF SUB-INTERVALS 2% AND COEFFICIENTS PRECISION IN BITS (J)

n 2% J error
Muller Rounding Our work

2 8 6 2712.4 2710.1 2713.1
2 16 6 2713.58 2710.9 2713.94
2 16 9 2—16.4 2—13.9 2—16.67
2 32 9 2—17.62 2—14.96 2—18
2 64 14 2723.16 2720.9 2723.33
3 16 14 - 2-19 2723
4 8 15 _ 2—19.48 2—24.39
Exponential Function EXP(X) Interval: [0, 1]
2 8 6 2712.13 279.87 2712.89
2 32 10 2718.68 2715.98 2718.88
2 64 14 2—23.48 2—20.98 2—23.69
3 16 14 - 2-19 27281
4 8 15 - 219 2724
Logarithmic Function Ln(X) Interval: [1,2]
2 8 5 2—11.15 2—9 2—11.86
2 16 7 2—14.66 2—12.34 2—15.3
2 64 14 2723.53 2721 2723.17
3 16 14 - 2189 2728
4 8 14 - 218 2723

Sinusoidal Function sin(X) Interval: [0, 1]
2 8 6 2712.65 2710 2713
2 16 10 2717.48 2715 2717.8
2 64 14 2—23.5 2—20.98 2—23.2
3 16 15 _ 9—19.94 9—23.8
4 8 15 _ 2719.13 2724

Square-root reciprocal Interval: (1, 2]

[13] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accurate
function approximation,” in Proceedings of the 13th IEEE Symposium
on Computer Arithmetic, Asilomar, California, USA, pp. 175-183, July
1997.

[14] J.-M. Muller, “A few results on table-based methods,” Research Report,
vol. 5, Oct. 1998.

[15] M. J. Schulte and J. E. Stine, “The symmetric table addition for accurate
function approximation,” Journal of VLSI Signal Processing, vol. 21,
no. 2, pp. 167-177, 1999.

[16] A. T. Florent de Dinechin, “Some improvements on multipartite table
methods,” in Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, Vail, Colorado, USA, pp. 128-135, June 2001.

[17] O. Mencer, Rational Arithmetic Units in Computer Systems. Ph.D thesis,
Stanford University, Stanford, CA, USA, Jan. 2000.

[18] A. A. Liddicoat and M. J. Flynn, “Parallel square and cube compu-
tations,” in Proceedings of the 34th Asilomar Conference on Signals,
Systems, and Computers, California, USA, Oct. 2000.

[19] M.J. Schulte and J. Earl E. Swartzlander, “Truncated multiplication with
correction constant,” in VLSI Signal Processing VI, IEEE Workshop on
VLSI Signal Processing, Eindhoven, Netherlands, pp. 388-396, 1993.

