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Abstract— The benefit of high radix Booth encoders in reduc-
ing the number of partial products in fast multipliers has been 
hampered by the complexity of generating the hard multiples. 
The use of redundant binary (RB) Booth encoder can over- 
come this problem and avoid the error compensation vector 
but at the cost of doubling the number of RB partial products. 
This paper presents a novel covalent RB Booth encoder to 
generate a compound RB partial product from two adjacent 
Booth encoded digits. The new encoder fully exploits the 
characteristics of Booth encoded numbers to restore the 
effective partial product reduction rate of RB Booth encoder 
while maintaining the simplicity of hard multiple generators 
and eliminating the constant correction vector. A legitimate 
comparison on an 8×8-bit RB multiplier prototype shows that 
the multiplier constructed with our proposed Booth encoder 
consumes lower power and computes faster than those with 
the normal binary and redundant binary Booth encoders. 

I.INTRODUCTION 
Digital multiplier is an obligatory and critical arithmetic 

unit in microprocessors, digital signal processors and 
multimedia application accelerators. Two operations are 
essential in fast multiplier design, namely the partial 
product generation and their accumulation. Algorithms for 
speeding up multiplier work on the basis of reducing either 
the number of partial products or the time needed to 
accumulate them. Attempts have been made to employ 
Redundant Binary (RB) number [1][2] as an internal format 
for partial product accumulation. The carry-free addition 
allows the partial products to be reduced at a rate of 2:1 
using the RB adders as oppose to the reduction rate of 3:2 
with binary carry-save adders. Moreover, the regular 
structure of the RB summing tree makes RB multipliers 
amendable to VLSI layout. Although the RB summing tree 
is in general more costly to implement in the entire RB 
multiplier design, the Booth encoder and the RB Partial 
Product Generator (PPG) determine how efficient these RB 
partial products are generated, and contribute indirectly to 
the performance and cost of the multiplier.  

Traditionally, Booth-2 encoding, also known as the 
modified Booth algorithm, is employed to reduce the 
number of additions in the summation network by half. 
Although the number of partial products can be reduced 

aggressively with high radix Booth encoder, the number of 
hard multiples and the difficulty in their generation 
increases commensurately with the radix. As Booth 
encoding adds delay in the partial product generation and 
reduces the delay in their summation, there is a bound on 
the radix of Booth encoder to be beneficial. To extend this 
limit, a redundant binary signed-digit Booth encoder was 
proposed by N. Besli [3] to simplify the generation of hard 
multiples and the negation of the multiples. It turns out that 
the scheme actually devastates the partial product reduction 
rate. As the circuit for each digit of the RB partial product 
will be duplicated in a large number, considerably more 
hardware is incurred. 

In this paper, we present a novel Covalent Redundant 
Binary Booth Encoder (CRBBE) whereby a compound RB 
partial product is generated from two adjacent Booth 
encoded digits. In this encoder, the signs of the encoded 
digits are ignored at the outset and only the absolute values 
of the coefficients need to be produced. Hard multiples are 
generated with similar simplicity as the RB Booth encoder 
of [3]. Therefore, the hardware resource used to build this 
circuit is greatly reduced. Compared with the normal binary 
Booth encoder, the proposed CRBBE gets rid of the 
correction vector [2] while having the same partial product 
reduction rate for the same radix of Booth encoding.   

II.PRELIMINARIES  

A.   Redundant Binary Number Representations 

A Redundant Binary (RB) number is a special subset of 
the generalized signed digit number representation [4]. It 
consists of digits from the set {−1, 0, 1}. Symbolically, a 
RB digit can be represented in a positive-negative coding 
format with the notation (X+, X −). For binary X+ and 
X −, the RB digit, R can be calculated as:  

+ −= −R X X                                   (1) 
which yields the coding style defined in TABLE I.  

The addition of two n-bit 2’s complement numbers, A 
and B can be expressed as 

_ _

( ) ( 1) ( , ) (0,1).A B A B A B A B+ = − − = − + = +          (2) 
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TABLE I.   CODING FORMAT FOR RB NUMBER  

 

 
Figure 1.  RB adder for generating the 5M hard multiple [3] 

The composite number ( , )A B  can be interpreted as a RB 
number. Let ai and bi be the ith bits of A and B, respectively. 
Equation (2) implies that the addition can be evaluated by 
first inver-ting all bits of B and then grouping each inverted 
bit with the corresponding bit of A to form a RB number 
before the constant digit 1, i.e., (0, 1) is added to its least 
significant digit (LSD). It should be noted that the weight 
of the most significant digit (MSD) of a RB number is 2n−1, 
while that of a 2’s complement number is −(2)n−1. 
Therefore, the MSD of the RB number can be rewritten as 
(

n-1b , an-1) to avoid the sign extension problem in the partial 
product accumulation of redundant binary multiplication.  

B.   Booth Encoding  

1) Normal binary Booth encoding 

The Booth algorithm [5] is an efficient way to reduce 
the number of partial products by grouping the bits of the 
operand called multiplier to form signed numerals. As the 
radix value, 2n

 (n=1, 2, 3…) of the Booth-n encoding in-
creases, the number of encoded Booth digits for the multi-
plier decreases by a factor to 1/n, so does the number of 
partial products. It might appear that choosing the highest 
possible radix Booth algorithm according to the bit-width 
of the multiplier results in a fastest multiplier. However, a 
close examination revealed that the number of multiples 
also increased commensurately with the radix to 2n+1, so 
did the number of hard multiples [6], which referred to a 
multiple that is not a power of two and thus cannot be 
obtained easily by simple shifting and/or complementation. 
As a result, some carry propagation adders are needed to 
generate the hard multiples. Since the generation of the 
partial products is not accomplished until all hard multiples 
are produced, the latency of the multiplier increases. There-
fore, there is hardly any advantage for Booth-3 encoding 
and above due to the difficulty of generating the hard 
multiples and the complex decoding logic.  

On the other hand, these limitations can be lifted in RB 
system up to Booth-4 encoding by exploiting the 
redundancy of RB number. To differentiate between the 
two types of Booth encoding, we call the former normal 
binary Booth encoding (NBBE) and the latter, which 
generates the redundant binary signed digit, the redundant 
binary Booth encoding (RBBE). 

TABLE II.  REDUNDANT BINARY BOOTH-4 ENCODING 

 

2) Redundant binary Booth encoding 

To overcome the problem of generating hard multiples 
in high-radix Booth encoding, N. Besli et al. noticed that 
some hard multiples can be obtained by the differences of 
two simple (power-of-two) multiples [3]. The partial 
products so generated conform to the format of positive-
negative RB coding. This distinguishing Booth encoding 
logic is RB Booth encoding. TABLE II illustrates the RB 
Booth-4 encoding, where the original hard multiples of 
±3M, ±6M and ±7M are replaced by ±(4M−M), ±(8M−2M) 
and ±(8M−M), respectively. The only exception is the hard 
multiple 5M, which cannot be readily produced in this 
manner. Therefore, additional hardware is necessary to 
generate this 5M multiple. Fig. 1 shows a simple RB adder 
to add 4M and 1M. It turns out that this RB adder is carry-
free and does not lie in the critical path of the RB Booth-4 
encoder and PPG circuit. Compared to NBBE, the ease of 
generating the hard multiples in RBBE has been offset, to 
certain extend, by its complex circuitry involving the use of 
high fan-in gates. In addition, the cost of high fan-in gates 
and their associated detriments are aggravated by the 
duplication of each digit in the RB partial products [3].  

III. DESIGN OF COVALENT RB BOOTH ENCODER 

Using RBBE, a pair of coefficients, (pi
+, pi

−) is 
generated from the bits of the multiplier. It is used to form 
the ith RB partial product of the multiplicand [3]. The hard 
multiple problem is circumvented at the expense of 
doubling the number of RB partial products. This is 
because only one Booth encoder is used to generate one 
RB partial product as opposed to the use of NBBE where 
two binary partial products can be grouped to form a single 
RB partial product. Half of the binary bits representing the 
RB partial product generated from the simple multiple in 
the RBBE encoding are filled with “0”s, which is very 
inefficient. In this section, a novel covalent redundant 
binary Booth encoding (CRBBE) algorithm is proposed. It 
utilizes the characteristics of Booth encoded numbers to 
generate a reduced number of RB partial products.  
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TABLE III. PERMISSIBLE (di+1 di) IN BOOTH-1 ENCODING 

 

TABLE IV. MODIFIED DUPLET (di+1 di) IN BOOTH-1 ENCODING 

  

The idea of CRBBE is to produce a RB partial product 
equivalent to two NB partial products generated from a pair 
of adjacent Booth encoders. This is possible provided that 
the two adjacent Booth encoders always generate signed 
digit coefficients of opposite signs so that their correspond-
ding partial products can be combined to form a single 
positive-negative coded RB partial product. A special RB 
Booth encoder can be designed to generate a compound RB 
partial product from two Booth encoded digits. We call it 
covalent RBBE for its analogy to the way a covalent 
compound is formed from charge sharing. To introduce the 
idea, we start by Booth-1 encoding, where the multiplier is 
encoded to exhibit the following properties: 

Property 1:  No two consecutive non-zero digits are of 
the same sign, i.e, di+1di = −1 ∀ i∈[0,n], where di+1 and di are 
two nearest non-zero digits and n is the width of the RB 
partial product. It ensures that the signs of the nonzero 
digits alternate in the encoded multiplier. For example, 
01001 0 is legal while 010010 and 01 001 0 are illegal.  

Property 2: Any zero between a leading 1 and a 
trailing1  is substituted by a negative zero 0 . For example, 
01 0 0 0 1001 0 10 is a legal format. 

 According to the above properties, not all combinations 
of contiguous digit pairs are permissible in the encoded 
numbers. TABLE III depicts all possible combinations, 
grouped into four categories based on the left digit di+1. 
From the definition of Booth encoding, the coefficient of 
the multiple, pi

+ − pi
− = 2di+1+di. Since the numeral 0 is 

neutral and equivalent to 0 , we can reformat the duplets in 
TABLE III such that one digit of the pair is positive and 
the other is negative, as shown in TABLE IV. In TABLE 
IV, the numerals in bracket represent the coefficients, (pi

+ , 
pi

−). The shaded cells represent the positive-negative pairs 
while the other cells represent the negative-positive pairs.  

The above CRBBE is based on Booth-1 encoding, 
where the two contiguous digits, di+1 and di, are mapped 
from two contiguous bits bi+1bi and bibi−1 of the multiplier, 
respectively. Thus, the pair of coefficients, (p+

i, p−
i) is a 

compound RB coefficient. Similar to the simple RB 
coefficient, negative compound coefficient can be obtained 
from its positive counterpart by simply swapping the values 
of p+

i and pi
−. The sign of the MSD di+1 is used to determine 

if the swapping of p+
i and pi

− is necessary. The criterion for 
the ordering of the coefficients is given by (3). 

TABLE V. PROPOSED CRBBE-2 DUPLETS (di+1di) 

 

( ) 1 1

1 1

(2 , ) if >0 (pos-neg pair)
,

( , 2 ) if <0 (neg-pos pair)
i i i

i i
i i i

d d d
p p

d d d
+ ++ −

+ +

⎧ ⋅⎪= ⎨ ⋅⎪⎩

          (3) 

With some restriction on the legitimacy of the encoded 
digits, two contiguous digits, di+1di, of Booth-2 encoding 
can also be mapped from three contiguous bits b2i+3b2i+2 
b2i+1 and b2i+1b2ib2i−1 of the multiplier to generate the com-
pound coefficients for a RB partial product. The contiguous 
digits, di+1di, can be similarly rewritten as positive-negative 
or negative-positive pairs except for the cases of 11 and 1 1 , 
which correspond to the hard multiples ±5M as shown in 
TABLE V. From the shaded columns of TABLE V, the 
coefficient reordering criterion is given by (4). 

1

1

(4 , ) if >0, except 111( , )
( , 4 ) if <0, except 111i i

d d di i ip p
d d di i i

++ −

+

⎧ ⋅⎪ += ⎨
⋅⎪ +⎩

              (4) 

Fig. 2(a) shows the CRBBE-2 circuit which is 
composed of two adjacent Booth-2 encoders. The lower 
encoder is fed from the binary bits b2i+1b2ib2i−1 of the 
multiplier and generates the control signals, 1mi and 2mi, 
and a sign bit, sgni taken directly from the MSB, b2i+1. The 
upper encoder is fed from the bits b2i+3b2i+2b2i+1, and 
generates the signals, 1mi+1, 2mi+1, and a sign bit, sgni+1 = 
b2i+3. All these output signals will be reformatted according 
to TABLE V before they are passed to the RB PPGs. The 
reformatting circuit is shown in Fig. 2(b). From (4), the sign 
of di+1 decides the value of pi

+ and pi
−. When di+1 is zero, its 

sign bit is complemented before it is used as an active high 
swap flag. Otherwise, the original sign is used as the swap 
flag. An active low swap flag is also generated for the 
swapping circuit of the RB PPG. Therefore, we have (5). 

To convert the duplets, 12 to 2 2  or 12  to 2 2, the output 
signals of 2mi+1 and 1mi+1 from the upper encoder are to be 
complemented in order to convert |1| to |2| when the 
contiguous digits are of the same sign and when both 
signals 1mi+1 and 2mi are active. For all other duplets, the 
output signals 2mi+1 and 1mi+1 retain their original values. 
The converted signals, 2Mi+1 and 1Mi+1 of the upper 
encoder are given by (6) and (7). The control signal for the 
duplets 11 and 1 1  corresponding to the special ±5M 
multiples marked * in TABLE V can be generated by (8). 

1 1 1swap (1 2 ) sgni i ii m m+ + += +                              (5) 

( )( ) 11 11
2 1 2 sgn sgn 2 ii iiM m m mi i ++ ++

= ⋅ ⋅                     (6) 

( )( ) 11 11
1 1 2 sgn sgn 1 ii iiM m m mi i ++ ++ = ⋅ ⋅                      (7) 

1 115 (sgn sgn ) 1 1i i iiM m m+ ++= ⋅ ⋅                          (8) 
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(a) covalent Booth-2 encoder            (b) reformatting circuit 

Figure 2. CRBBE-2 encoder 

 
Figure 3. RB Partial Product Generator (PPG) for CRBBE-2 

Fig. 3 shows a slice of the PPG circuit for generating 
one RB digit in CRBBE-2. The logic gates in the input 
stage are realized with complementary CMOS logic style to 
reduce their loading to the CRBBE-2 circuits. Since a large 
number of such input stages are connected in parallel, 
strong driving capability is required from the outputs of the 
encoders. The output stage of the RB PPG circuit is 
implemented in transmission gate style with unity fan-out. 
It drives the CMOS input stage of the redundant binary 
adder (RBA) in the partial product summing tree. 

IV.SIMULATION RESULTS 

An 8×8-bit RB multiplier is used as a vehicle to 
compare the performances of our proposed CRBBE and 
other Booth encoders. For a legitimate comparison, the 
radices of different Booth encoders are chosen based on the 
same number of RB partial products generated. Therefore, 
we compare the simulated worst case delay, power 
dissipation and transistor count of three RB multipliers 
employing CRBBE-2, NBBE-2 and RBBE-4, respectively. 
The same RBA summing tree and RB-to-NB converter 
circuits of [2] are used for these multipliers. 

The simulation was carried out using HSIM in TSMC 
0.18μm technology at 1.8V. 4096 randomly generated data 
with the input rate of 100MHz is applied to the circuits. 
The simulation results are listed in TABLE VI. From 
TABLE VI, it is evident that our proposed CRBBE mul-
tiplier outperforms the others. The RBBE one consumes an 
excessive number of transistors due to its inefficient com-
position of PPG. The high transistor count also degrades its 
power dissipation. Although the transistor count of our 
multiplier is slightly higher than that of NBBE multiplier, 
almost all the surplus transistors are located in the input 
stage of the PPG circuit. This part of the circuit consumes 
only a small fraction of power of the entire multiplier.  

TABLE VI SIMULATION RESULTS OF 8×8-bit RB MULTPLIERS 
8×8-bit 

Multiplier 
Transistor 

Count 
Power(mW) 
@ 100MHz Delay(ns) PDP(pJ) 

CRBBE-2 2628 0.45 2.25 1.01 
NBBE-2[2] 2592 0.48 2.72 1.31 
RBBE-4[3] 4172 0.66 2.43 1.60 

It is worth noting that the results vary as the width of 
the operands change. For an n×n-bit multiplier, the number 
of RB partial products generated from NBBE-2, RBBE-4 
and CRBBE-2 are [n/4] +1, [n/4] and [n/4], respectively. In 
NBBE multiplier, a correction vector must be generated to 
compensate for the aggregate errors resulting from both RB 
coding and the Booth encoding [2]. Since most DSPs work 
on power-of-two operands, this correction vector will 
increase the number of stages of the summing tree and 
incur additional hardware for its accumulation. Conse-
quently, the power dissipation and worst case delay are 
degraded. In this simulation, the RBA tree of the CRBBE 
multiplier has one row lesser than that of the NBBE 
multiplier, resulting in some saving in power and delay. If 
the bit length of the multiplier is exactly 2k−1, the NBBE 
multiplier circuit may become comparable or even surpass 
since the correction vector will have little effect on the 
depth of the RBA summing tree.   

V.CONCLUSION 
In this paper, a novel covalent redundant binary Booth 

encoder is presented. The design of this new encoder fully 
exploits the characteristics of Booth encoded numbers to 
generate a compound RB partial product from two adjacent 
Booth encoded digits. Consequently, it provides the same 
advantages of RB Booth encoder for the ease of generating 
hard multiples and avoidance of error compensation vector, 
the two problems that generally confronted by NB Booth 
encoding multiplier. Additionally, the proposed CRBBE 
transcend RBBE in its ability to reduce the total number of 
RB partial products by half for the same radix.  
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