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Abstract - This paper presents a complete error

analysis for a novel square root hardware imple-

mentation. The analysis includes the powering

method used for the initial approximation and

the higher order Newton-Raphson square root

iterations. Both theoretical and algorithmic error

analysis are presented and compared. The algo-

rithmic analysis provides a more accurate error

estimate which reduces the size of the memory

required in the initial approximation stage to less

than half its original size.
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I. Introduction

Any general purpose system complying to the IEEE
floating point standard [iee85] must provide an im-
plementation of the division and square root opera-
tions. Both are also important operations for signal
processing. Although they occur less frequently than
the floating point addition, subtraction or multiplica-
tion, improving their performance improves the system
performance for many applications [OBE 97].
The algorithms for the division and square root cal-
culations are grouped in two broad categories: sub-
tractive and multiplicative. In the subtractive meth-
ods, the convergence rate is linear and the main op-
eration is a subtraction coupled with a multiplication
by a single digit. On the other hand, in the multi-
plicative methods, the convergence rate is quadratic
and the main operation is a full multiplication. Multi-
plicative algorithms are also called functional iteration
algorithms because they start with an initial approxi-
mation of the result and iterate on a function involving
additions and multiplications to get the final solution.
The iterations use, in general, the Newton-Raphson
root-finding algorithm either from the first or a higher
order. The convergence rate of the multiplicative al-
gorithm is even better than quadratic if a higher order
function is used.
This work presents the error analysis for the higher or-
der square root multiplicative algorithm [TAW 05] and
for the initial approximation method, the powering
method, that is employed in the algorithm. Both the-
oretical and algorithmic error analysis are presented
and compared. The theoretical method is based on
Taylor’s expansion. The algorithmic method on the
other hand is based partially on an exhaustive search.
The algorithmic method gives a tighter error bound.

In fact it gives the actual maximum error of the algo-
rithm. This more accurate error analysis reduces the
area and delay of the resulting circuits.
The remainder of the paper is organized as follows:
Section II presents the theoretical error analysis of the
powering method while section III presents the algo-
rithmic error analysis. Section IV reviews the square
root algorithm presented in [TAW 05] while its error
analysis is presented in section V. The case of the odd
exponent is treated in section VI. Finally, section VII
concludes the paper.

II. The powering method and its theoretical
error analysis

The powering method introduced by Takagi [TAK 97]
can be used to generate the power of an operand, i.e.,
Xa for an operand X and a given, fixed a. The power
a has the form ±2b where b is any integer or ±2b1 ±
2b2 where b1 is any integer and b2 is any non-negative
integer. We focus in this section on the special case
a = −2−b in which b is a non-negative integer. The
same analysis can be applied to the other cases as well.

If the significand of the number has the binary repre-

sentation X = [1.x1x2x3 · · ·xn] such that X ∈ [1, 2[

and we define the two quantities p = [1.x1x2x3 · · ·xm]

and q = 2−m−1[xm+1.xm+2xm+3 · · ·xn] then X =

p + q. Simple mathematical manipulations yield:

Xa = (p + q)a (1)

= (p + 2−m−1 + q − 2−m−1)a (2)

= (p + 2−m−1)a

(

1 +
q − 2−m−1

p + 2−m−1

)a

(3)

≈ (p + 2−m−1)a

(

1 + a
q − 2−m−1

p + 2−m−1

)

(4)

≈ (p + 2−m−1)a−1(p + 2−m−1 + a(q − 2−m−1)) (5)

≈ (p + 2−m−1)−(2−b)−1 (p + 2−m−1

−2−b(q − 2−m−1))
(6)

If the bits of p, excluding the leading ‘1’, index a table



to get the coefficient c = (p + 2−m−1)−(2−b)−1 then
Xa ≈ cX̃ where X̃ = (p + 2−m−1 − 2−b(q − 2−m−1)).
Expanding X̃ gives

X̃ =1.x1 · · ·xm1 0 · · · 0 1 0 · · ·0
−0.0 · · ·0 0 0 · · · 0 xm+1xm+2· · ·xn

X̃ =1.x1 · · ·xm1 0 · · · 0 1 0 · · ·1
+1.1 · · ·1 1 1 · · · 1 xm+1xm+2· · ·xn

X̃ =1.x1 · · ·xmxm+1xm+1 · · ·xm+1xm+1xm+2· · ·xn

+2−n−b

There are b bits of the value xm+1 between xm+1 and
xm+2. If the 2−n−b term is neglected then a simple
rewiring and bitwise inversion in X yields X̃ .
Equation 4 retains only the first two terms of the infi-
nite series. This infinite series is alternating (each term
has opposite sign to the previous one) and the terms
are decreasing in magnitude. Therefore, the approxi-
mation error due to the series expansion, εs, has the
first truncated term multiplied by the external factor
(p + 2−m−1)a as an upper bound.

εs <
(−2−b)(−2−b − 1)

2

(q − 2−m−1)2

(p + 2−m−1)2−b+2

εs <
(2−b)(2−b + 1)

2

(2−m − 2−m−1)2

(1 + 2−m−1)2−b+2

εs <
(2−b)(2−b + 1)

2
× 2−2m−2 (7)

Another error arises from storing a finite precision
value in the table to approximate the coefficient c. The
most significant bit of c is always 0 and it is not stored.
Hence, if the table width is t bits, the truncation error
is less than 2−t. The part of the approximation error
due to the truncation of c is equal to the truncation
error multiplied by the maximum value of X̃. Since
X̃ < 2, the total approximation error is

ε <
(2−b)(2−b + 1)

2
× 2−2m−2 + 2−t+1 (8)

The size of the lookup table giving this error is 2m ×
t bits. Equation 8 gives the theoretical error bound of
the algorithm.

III. The algorithmic error analysis of the
powering method

The error can be expressed as

ε = (p+ q)−2−b

− c(p+2−m−1 −2−b(q−2−m−1)) (9)

where c = (p + 2−m−1)−2−b−1 truncated to t bits. To
find the error bound, we might search exhaustively for
the values of p and q that produce the maximum error.
However, an exhaustive search is not possible because
of the huge number of combinations and the length of
time required to carry this search. The elimination of
q from equation 9 makes the exhaustive search feasi-
ble since the number of potential values for p is small.
To eliminate q from equation 9 we must find the value
of q that gives the maximum error analytically. For-
tunately, ε is a differentiable function with respect to
q. Hence, we use the first and second derivatives in
order to determine the value of q at which ε attains its
maximum value.

∂ε

∂q
= (−2−b)(p + q)−2−b−1 + c(2−b) (10)

∂2ε

∂q2
= (2−b)(2−b + 1)(p + q)−2−b−2 (11)

Equation 11 indicates that ∂2ε
∂q2 > 0. Therefore, the

extremum point obtained from equation 10 is a local
minimum. The value of q giving the maximum error
is thus one of the end points of the interval i.e. q = 0
or q = 2−m − 2−n. Substituting these two values in
equation 9, we get two error functions ε1 and ε2 that
are functions of p only.

ε1 = p−2−b

− c(p + 2−m−1 + 2−b−m−1) (12)

ε2 = (p + 2−m − 2−n)−2−b

− c(p + 2−m−1 + 2−b−n − 2−b−m−1) (13)

We next search for the value of p that maximizes each
of these two functions and select the greatest of the
two errors as the maximum approximation error of the
algorithm.
Table I lists both the theoretical and algorithmic error
bounds for the square root reciprocal (b = 1) approxi-
mation. From the table we can see that the algorithmic
error analysis gives a tighter bound. In fact, it gives
the actual maximum error i.e. the best bound.

IV. Square root algorithm

In this section we review our proposed [TAW 05]
square root implementation. The algorithm is from
the multiplicative category and it computes the square
root for the double precision format. The algorithm
employs the powering method for the initial approxi-
mation of the square root reciprocal. It then performs
one iteration of the second order Newton-Raphson al-
gorithm followed by a multiplication by the operand



TABLE I
Comparison between the theoretical and

algorithmic error bounds for the square root
reciprocal operation

m t Theoretical Algorithmic
6 17 2−14.67 2−15.06

7 18 2−16.2 2−16.85

8 21 2−18.67 2−19

9 23 2−20.67 2−21

10 24 2−22.2 2−22.7

to get an approximation to the square root. Finally
the algorithm rounds this result according to one of
the four IEEE Rounding modes. The initial approxi-
mation parameters m and t have the values 8 and 21
respectively.

Fig. 1 presents the proposed architecture. The box
labeled ‘g’ is a temporary register to hold the interme-
diate results of the calculation. The main block in the
figure is the fused multiply add (FMA) unit. Given
X = p + q, the steps of the algorithm are:

1) From p and the lookup table → c,
from X → X̃,
cX̃ → y0

2) y0 × y0 → r

3) 1 − r × X → d

4) 3
8d + 1

2 → u

5) 1 + d × u → v

6) y0 × v → y1

7) y1 ×X → z. For RZ or RM modes, round z to the
nearest value using the guard bits and jump to step 8.
For RP mode round z to the neasrest value using the
guard bits and jump to step 9. For RN mode truncate
the guard bits of z and jump to step 10.

8) If z2 − X > 0, then result = z − 1ulp. Otherwise,
result = z.

9) If z2 − X < 0, then result = z + 1ulp. Otherwise,
result = z.

10) If (z + 0.5ulp)2 − X > 0, then result = z. Other-
wise, result = z + 1ulp.

In steps 8, 9 and 10 the FMA acts as a multiply
subtract unit by adding the two’s complement of the
third operand.

V. Error analysis of the square root algorithm

The error in the approximation is due to two sources:
the first is the approximation method while the second
source is the truncation of the intermediate results in
the eight steps of the algorithm. We present an error
analysis for each source in the following subsections.

Fig. 1. Block diagram of the proposed architecture.

A. Error analysis of the approximation method

If the initial approximation is called y0 and we define
the quantity d = 1 − y2

0X then

1√
X

=
y0√
1 − d

(14)

1√
X

≈ y0

(

1 +
1

2
d +

3

8
d2 + · · ·

)

(15)

Keeping k terms gives a kth convergent algorithm
which yields a number of correct bits in iteration i+1
that is k-times the number of correct bits in iteration i.
Specifically, if only three terms are kept— which is
our case— such that y1 = y0

(

1 + 1
2d + 3

8d2
)

and since
y0 = X−0.5 − ε then

d = 2ε
√

X − ε2X (16)

d2 = 4ε2X − 4ε3X
√

X + ε4X2 (17)

y1 =
1√
X

−
5

2
ε3X +

15

8
ε4X

√
X −

3

8
ε5X2 (18)

The error after one iteration is dominated by the neg-
ative term − 5

2ε3X . The algorithm thus gives almost
three times the number of correct bits each iteration



and guarantees that y1 < 1√
X

. We multiply the final

approximation by the operand X in order to obtain
an approximation to the square root from the square
root reciprocal. Therefore, the final error is given by

εf =
5

2
ε3X2 (19)

εf =
5

2
(max(ε1, ε2))

3(p + q)2 (20)

εf <
5

2
(max(ε1, ε2))

3(p + 2−m − 2−n)2 (21)

where the results of our algorithmic analysis are used.
Equation 21 gives the final approximation error as a
function of p only. Hence we can search for the max-
imum error by using an exhaustive search. The max-
imum final error for the case of m = 8 and t = 21
has the value εf = 2−55.7. If we use the theoreti-
cal error analysis bound the final error takes the value
εf = 2−52.7 This means that the theoretical bound un-
derestimates the accuracy of the algorithm by 3 bits.

B. Truncation Error analysis of the square root algo-
rithm

To guard against the accumulation of the truncation
error we add L guard bits to the FMA inputs. We
choose the value of L such that the sum of the ap-
proximation and truncation errors lies in a suitable
interval for the given rounding mode.

We define the truncation error as the difference be-
tween the untruncated value and the truncated value.

Each operand of the FMA has 53 + L bits. One bit
lies to the left of the binary point and 52+L bits lie to
the right of the binary point. The product of two such
operands has a total of 106 + 2L bits. Two bits lie to
the left of the binary point and the rest to the right.
We truncate this product to 53 + L bits by throwing
away the most significant bit which is always zero and
the least 52 + L bits. The error that results from this
truncation has a maximum value of 2−52−L.

We calculate the truncation error in the first seven
steps of the algorithm. The truncation error of step 1
is included in the error analysis of the initial approxi-
mation.

Step Error term Error interval

2 : εtr [0, 2−52−L] (22)

3 : εtd −
(

max(X) × εtr + [0, 2−52−L]
)

= [−3 × 2−52−L, 0] (23)

4 : εtu
3

8
× εtd + [0, 2−52−L]

= [−
9

8
2−52−L, 2−52−L] (24)

5 : εtv max(d) × εtu + max(u) × εtd

+ [0, 2−52−L]

= [−
3

2
2−52−L, 2−52−L] (25)

6 : εty1 max(y0) × εtv + [0, 2−52−L]

= [−
3

2
2−52−L, 2 × 2−52−L] (26)

7 : εtz max(X) × εty1 + [0, 2−52−L]

= [−3 × 2−52−L, 5 × 2−52−L](27)

As indicated in step 7 of our algorithm, for the case of
round to zero, minus infinity or plus infinity we round
the guard bits. The error from this rounding lies in
the interval [−2−53, (0.5 − 2−L) × 2−52]. The sum of
the total truncation error and the approximation error
is [−3 × 2−52−L − 2−53, (0.5 + 22−L) × 2−52 + 2−55.7].
Therefore, the minimum number of guard bits that
guarantees correct rounding is four.
When L = 4, the total error is [−0.6875×2−52, 0.827×
2−52]. For the case of RZ or RM rounding modes we
divide the total error interval into the two intervals:
[−0.6875 ulp, 0[ and [0, 0.827 ulp]. If the total error
lies in the first interval then the correct rounded re-
sult is z − 1 ulp and if it lies in the second interval
then the correct rounded result is z. As for the RP
rounding mode we divide the total error interval into
the two intervals: [−0.6875 ulp, 0] and ]0, 0.827 ulp].
If the total error lies in the first interval then the cor-
rect rounded result is z and if it lies in the second
interval then the correct rounded result is z + 1 ulp.
We determine in which of the two intervals the total
error lies by comparing the argument X with z2.
For the case of round to nearest, we truncate the guard
bits. The truncation error is [0, (1−2−L)×2−52]. The
sum of the total truncation error and the approxima-
tion error is [−3× 2−52−L, (1+22−L)× 2−52 +2−55.7].
Therefore, the minimum number of guard bits that
guarantees correct RN rounding is four. When L = 4,
the total error is [−0.1875 ulp, 1.33 ulp]. The com-
puted machine number z is less than the true result by
no more than 1.33 ulp and greater than the true result
by no more than 0.19 ulp. Since we are computing the
square root, it is impossible for the true result to be
exactly equal to z +0.5ulp. Otherwise, the original ar-
gument would be (z+0.5ulp)2 which requires more bits
to represent than is available for the argument. Hence,



the round to nearest even and the round to nearest up
modes are equivalent in this case. If the total error
lies in the interval [−0.1875 ulp, 0.5 ulp[ the round to
nearest result is z. If, on the other hand, the total er-
ror lies in the interval ]0.5 ulp, 1.33 ulp[ the round to
nearest result is z + 1 ulp. The comparison of the ar-
gument X with (z +0.5 ulp)2 determines which of the
above two intervals containes the result. We then get
the correct rounded result which is either z or z+1 ulp.

VI. The case of the odd exponent

The case of the odd unbiased exponent needs further
elaboration. In this case, we subtract one from the
exponent and multiply the mantissa by two in order
to leave the argument unaltered and at the same time
make the exponent even. We call the new mantissa
Xodd (Xodd ∈ [2, 4[) and the initial approximation co-
efficient codd.
Changes in the initial approximation stage:

codd = ceven × (2−
3

2 )

X̃odd = 2 × X̃even

Since we are only interested in the product of codd and
X̃odd, we can multiply codd by 2 and divide X̃odd by 2
leaving their product unchanged. Hence,

codd = ceven ×
1√
2

(28)

X̃odd = X̃even (29)

Changes in steps 2 and 6:
In both steps we shift the product one bit to the left
(multiplication by two) before storing it. Hence in the
immediately following steps, step 3 and 7 respectively,
we replace Xodd by the original X. This shifting takes
place at the output of the multiplier using a multi-
plexer.
This way the inputs to the multiplier are the same for
both cases of odd or even exponent. The only change
is in the value of the initial approximation coefficient
and in the way we store the output of the FMA in the
intended register.
The error analysis must be reperformed. Following the
same error analysis method we get:

• the approximation error = [0, 0.223× 2−52],

• the total truncation error is the same and is equal
to [−0.1875 ulp, 1.25 ulp] for RN rounding mode and
[−0.6875 ulp, 0.75 ulp] for the remaining rounding
modes,

• the total error is equal to [−0.1875 ulp, 1.47 ulp] for
RN rounding mode and [−0.6875 ulp, 0.97 ulp] for the
remaining rounding modes.

The reliance on the theoretical error analysis solely
leads to the following results:

• the initial approximation error ε = 2−18.95

• the approximation error = [0, 2−51.52],

• the total truncation error is the same and is equal
to [−0.1875 ulp, 1.25 ulp] for RN rounding mode and
[−0.6875 ulp, 0.75 ulp] for the remaining rounding
modes,

• the total error is equal to [−0.1875 ulp, 2.64 ulp] for
the RN rounding mode and to [−0.6875 ulp, 2.14 ulp]
for the remaining rounding modes.

With only the theoretical analysis, we would increase
the initial approximation accuracy by employing a big-
ger table (m = 9 and t = 22)in order to ensure correct
rounded results in all rounding modes. Therefore the
more accurate algorithmic error analysis reduces the
memory requirements of the algorithm to less than
half of what the theoretical analysis predicts. This
decrease in the memory requirement not only reduces
the area of the circuit but also its time delay and power
consumption.

VII. Conclusions

We have presented a review to the powering method
and high order Newton-Raphson square root algo-
rithms. A detailed error analysis is given. A new
algorithmic error analysis is developed and presented.
This new approach reveals that the algorithmic analy-
sis is more accurate than the theoretical estimate. A
direct consequence of this more accurate analysis is
a substantial decrease in the memory requirement of
the initial approximation stage. Had we used the the-
oretical error analysis in the square root algorithm we
would have needed over twice the initial approxima-
tion memory that we use.
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