
Potential Functionality of Multi-valued Tunneling

Phase Logic Devices

Hossam A. H. Fahmy∗ Martin Morf† Richard A. Kiehl ‡

Abstract

The possibility for obtaining high functionality in
multi-valued logic gates based on tunneling phase
logic (TPL) is examined. Using assumptions based
on previous results for binary and ternary TPL,
the case of a 3-input 4-phase gate is analyzed. It
is found that such gates can equivalently perform a
rich combination of the functions XOR, AND, OR,
and NOT, and could thereby provide high function-
ality in a single element.

1 Introduction

The majority of digital circuits use voltage levels
to indicate the different logic values. Beside the
voltage, current-mode as well as charge-mode (like
Charge Coupled Devices [1, 2] or Single Electron
Logic [3, 4]) circuits also exist but are less popular.
Two other possibilities can be achieved using single
electron devices, namely the use of the frequency of
a waveform [5](appendix B) or the use of its phase
with Tunneling Phase Logic (TPL) [6].

The use of the phase of a waveform to represent
logic values in digital circuits has been proposed
some time ago [7, 8, 9]. It may also provide the
ability to perform multi-valued logic [10] in a simple
manner.

Tunneling Phase Logic has been proposed as a
viable approach to Terascale integration. However,
circuit issues and logic gate design using TPL de-
vices are not yet well understood. The main prob-
lem is interconnections between devices. One pos-
sible solution to reduce the number of wires needed
is to use multi-valued logic. The goal fo this study
is to gain an understanding of the potential func-
tionality of multi-valued TPL circuits so that we
can estimate the leverage of such an approach.

Two-phase and three-phase logic has been ana-
lyzed in detail before using traditional devices [7, 9]
and using TPL [6, 11]. The work presented here
consists of generalizing this to whatever number of
phases that can be practically implemented using

∗Solid State and Photonics Lab, Stanford University,

Stanford, California, USA
†Computer Systems Lab, Stanford University, Stanford,

California, USA
‡Solid State and Photonics Lab, Stanford University,

Stanford, California, USA

TPL. A particular case that is investigated in detail
is that of the use of 4 phases to represent 4 logic
values. A 3 input gate (each one can be any of
the 4 phases) has been studied and the resulting
functions are found to be quite rich from the logic
functionality point of view.

2 Basic operation

A complete analysis of the operation of TPL gates
has not yet been performed, however, some basic
properties of the gates have been obtained in com-
puter simulations. In particular, previous results
show that a binary TPL gate with a capacitively
coupled input signal can perform an inverter opera-
tion [6], while ternary TPL gates act as an inverter-
equivalent gate which performs a rotation opera-
tion [11]. The analysis of TPL gates as a function
of fan-in and the operation of gates with four or
more phase states has not yet been carried out. In
this study, we make two assumptions about this
operation in order to allow us to gain some under-
standing of potential functionality of a gate with 3
inputs and 4 phase states. First, we assume that
the input signal is simply the sum of several inputs,
which gives a resultant phase and amplitude. Sec-
ond, we assume that a 4 state gate performs the
same rotation rule as found for binary and ternary
gates.

3 The 4 phase logic

When the TPL is operated so that it can lock to
one of four phases of the pump frequency an odd
number of inputs must be used. Otherwise the in-
puts may cancel each other and a zero output would
occur, which is not one of the valid logic values
(phases). A C-language code has been written to
give the resulting truth table for a TPL gate with
any number of phases and inputs. This code gives
the results when no rotation is assumed and in com-
plex notation, i.e. the sum of the inputs reduced to
the closest valid logic value representation in com-
plex numbers. For the current analysis, it is used
to generate the truth table for the 4 phase-3 inputs
case. Then, different rotations can be assumed, as
in the case of 3 phase logic, and the effect can be
investigated manually. Once the general rule of ro-



A B C

D E F

00

01

10

11

00 00

000000

10 01

10 11 11

01 11

100111

01 10 01

11 10

Figure 1: The six possible coding schemes in 4
phase logic.

tation for any number of phases is known, this code
can be used to investigate the possibility of using
more phases and inputs.

In order to assess the usefulness of the gate it is
useful to know its boolean function equivalent. This
can be done by giving a binary code (00, 01, 10, 11)
to the 4 different logic values and relating the bits
representing the output of the gate to the bits rep-
resenting the inputs by logic functions. It is impor-
tant to note that the 4 phase case is 4 way symmet-
ric, i.e. if the binary coding assigned to the 4 values
is rotated by π/2, π or 3π/2 the same functions will
result. Hence, the total number of different coding
is equal to the number of ways the 4 binary codes
can be distributed on the 4 values divided by 4.
This is : (4× 3× 2× 1)/4 which is equal to 6. The
six different coding schemes are presented in Fig. 1.

It is interesting to note that the resulting truth
table (provided in the appendix) differs in the com-
plex notation result for each coding. However, if the
binary code is used instead of the complex number
then codings A and F are the same; B and E are
the same and C and D are the same. This means
that the phase representation is actually somewhat
richer (more complex) than the binary code repre-
sentation. Nonetheless, we will focus on the binary
representation in this study. In this truth table, no
rotation is assumed, i.e. the binary result is just
the code corresponding to the reduced sum.

Simple boolean equations can describe the rela-
tions between the outputs and the inputs for differ-
ent coding schemes. In the following the subscript
0 is used to denote the least significant bit while 1
denotes the most significant bit.

3.1 Logic functions with different rotation

cases

In the case of no rotation the logic functions are:

A1 = F1 = b1a1 + c1b1 + c1a1

Table 1: Multiplexer representation for some of the
functions

c b MUX(1) MUX(2)
00 00 0 0
00 01 a1 ⊕ a0 a1

00 10 a0 a1 ⊕ a0

00 11 a1 a0

01 00 a1 ⊕ a0 a1

01 01 1 0
01 10 a1 a0

01 11 a0 a1 ⊕ a0

10 00 a0 a1 ⊕ a0

10 01 a1 a0

10 10 0 1
10 11 a1 ⊕ a0 a1

11 00 a1 a0

11 01 a0 a1 ⊕ a0

11 10 a1 ⊕ a0 a1

11 11 1 1

A0 = F0 = MUX(1)

B1 = E1 = MUX(2)

B0 = E0 = b0a0 + c0b0 + c0a0

C1 = D1 = b1a1 + c1b1 + c1a1

C0 = D0 = b0a0 + c0b0 + c0a0

where MUX(1) and MUX(2) are the multiplexer
functions shown in table 1.

If a rotation of π is performed on every result
then for a coding scheme like A, the 00 output with
no rotation becomes 10 with the rotation, 01 be-
comes 11, 10 becomes 00 and finally 11 becomes
01. In all these substitutions, the least significant
bit remains the same while the most significant bit
is inverted. Hence A1 with a π rotation is the in-
verse of A1 without rotation while A0 remains the
same. A set of such simple observations can be
constructed for all the outputs and this gives the
following functions for the case of π rotation:

A1 = F1 = b1a1 + c1b1 + c1a1

A0 = F0 = MUX(1)

B1 = E1 = MUX(2)

B0 = E0 = b0a0 + c0b0 + c0a0

C1 = D1 = b1a1 + c1b1 + c1a1

C0 = D0 = b0a0 + c0b0 + c0a0

Similarly, the case of π/2 rotation can be ana-
lyzed and gives:

A1 = F1 = (c1 ⊕ c0)(b1 ⊕ b0) + (c1 ⊕ c0)(a1 ⊕ a0)

+ (b1 ⊕ b0)(a1 ⊕ a0)



A0 = F0 = MUX(1)

B1 = E1 = MUX(2)

B0 = E0 = (c1 ⊕ c0)(b1 ⊕ b0) + (c1 ⊕ c0)(a1 ⊕ a0)

+ (b1 ⊕ b0)(a1 ⊕ a0)

C1 = D1 = b0a0 + c0b0 + c0a0

C0 = D0 = b1a1 + c1b1 + c1a1

While the case of 3π/2 gives:

A1 = F1 = A1(π/2)

A0 = F0 = MUX(1)

B1 = E1 = MUX(2)

B0 = E0 = A1(π/2)

C1 = D1 = b0a0 + c0b0 + c0a0

C0 = D0 = b1a1 + c1b1 + c1a1

It is clear that the functions performed by the
codings A, B, E and F are richer than those per-
formed by C and D specially in the case of π/2 and
3π/2. This is because each output bit depends on
all the input bits and inherently contains a large
number of logic functions (XOR, AND, OR and
NOT). The 3 input 4 phase TPL can be also used
to implement the majority gate which is an impor-
tant building block for arithmetic circuits (to gener-
ate the carry in adders). The function given by A1

for example in the case of π/2 rotation is nothing
but the majority of the terms between parentheses.
The majority is also the function given by the C
and D codings for all the rotations.

Since the gates have the ability to perform the
XOR and majority functions, they are very suitable
to implement arithmetic circuits and large adders
and multipliers efficiently. These types of circuits
are the basic building blocks required for image pro-
cessing chips based on 2D Fast Fourier Transform
and other circuits proposed for Terascale integra-
tion applications [12].

4 Conclusion

The possibility for obtaining high functionality in a
3-input 4-phase multi-valued logic gate has been ex-
amined using assumptions based on previous results
for binary and ternary TPL. It has been shown that
such gates can potentially provide high functional-
ity in a single element. While the detailed results
are preliminary in that further work is needed to de-
termine the actual rotation rule and to check other
assumptions of the present analysis, these results
indicate that multi-valued TPL logic is a promis-
ing approach for realizing powerful computation in
compact circuits.

References

[1] M. H. Abd-El-Barr, Z. G. Vranesic, and S. G.
Zaky, “Algorithmic synthesis of MVL func-
tions for CCD implementation,” IEEE Trans-

actions On Computers, vol. 40, pp. 977–986,
Aug. 1991.

[2] H. G. Kerkhoff and M. L. Tervoert, “Multiple-
valued logic charge-coupled devices,” IEEE

Transactions On Computers, vol. C-30,
pp. 644–652, Sept. 1981.

[3] P. D. Tougaw and C. S. Lent, “Logical de-
vices implemented using quantum cellular au-
tomata,” Journal of Applied Physics, vol. 75,
pp. 1818–1825, Feb. 1994.

[4] S. Bandyopadhyay and V. P. Roychowdhury,
“Computational paradigms in nanoelectron-
ics: Quantum coupled single electron logic and
neuromorphic networks,” Japanese Journal of

Applied Physics, vol. 35, pp. 3350–3362, June
1996.

[5] H. Fahmy, “Novel digital structures utilizing
single electron devices,” Master’s thesis, Elec-
tronics and Communications Dept. Faculty of
Engineering, Cairo University, 1997.

[6] T. Ohshima and R. A. Kiehl, “Operation of
bistable phase-locked single-electron tunneling
logic elements,” Journal of Applied Physics,
vol. 80, pp. 912–923, July 1996.

[7] J. V. Neumann, “Non-linear capacitance or in-
ductance switching, amplifying and memory
organs,” US Patent No. 2,815,488, Dec. 1957.

[8] R. L. Wigington, “A new concept in com-
puting,” Proceedings of the IRE, pp. 516–523,
Apr. 1959.

[9] R. H. Dennard, H. Y. Joliusburger, N. Naka-
gawa, and G. E. Simaitis, “Logical systems uti-
lizing phase locked subharmonic oscillators,”
US Patent No. 3,234,470, Feb. 1966.

[10] K. C. Smith, “The prospects for multivalued
logic: A technology and applications view,”
IEEE Transactions On Computers, vol. C-30,
pp. 619–634, Sept. 1981.

[11] F. Liu, F.-T. An, and R. A. Kiehl, “Ternary
single electron tunneling logic element,” Ap-

plied Physics Letters, 1999.

[12] J. Earl E. Swartzlander, “Assessment of signal
processor architectures and integrated circuit
device requirements for computing at the tril-
lion device level,” 1998. Unpublished.



Appendix: Truth table for 4 phase logic

c b a A B C D E F

00 00 00 3 00 3 00 3 00 3 00 3 00 3 00

00 00 01 2+i 00 1 00 2+i 00 2-i 00 1 00 2-i 00

00 00 10 1 00 2+i 00 2-i 00 2+i 00 2-i 00 1 00

00 00 11 2-i 00 2-i 00 1 00 1 00 2+i 00 2+i 00

00 01 00 2+i 00 1 00 2+i 00 2-i 00 1 00 2-i 00

00 01 01 1+2i 01 -1 01 1+2i 01 1-2i 01 -1 01 1-2i 01

00 01 10 i 01 i 10 1 00 1 00 -i 10 -i 01

00 01 11 1 00 -i 11 i 01 -i 01 i 11 1 00

00 10 00 1 00 2+i 00 2-i 00 2+i 00 2-i 00 1 00

00 10 01 i 01 i 10 1 00 1 00 -i 10 -i 01

00 10 10 -1 10 1+2i 10 1-2i 10 1+2i 10 1-2i 10 -1 10

00 10 11 -i 11 1 00 -i 10 i 10 1 00 i 11

00 11 00 2-i 00 2-i 00 1 00 1 00 2+i 00 2+i 00

00 11 01 1 00 -i 11 i 01 -i 01 i 11 1 00

00 11 10 -i 11 1 00 -i 10 i 10 1 00 i 11

00 11 11 1-2i 11 1-2i 11 -1 11 -1 11 1+2i 11 1+2i 11

01 00 00 2+i 00 1 00 2+i 00 2-i 00 1 00 2-i 00

01 00 01 1+2i 01 -1 01 1+2i 01 1-2i 01 -1 01 1-2i 01

01 00 10 i 01 i 10 1 00 1 00 -i 10 -i 01

01 00 11 1 00 -i 11 i 01 -i 01 i 11 1 00

01 01 00 1+2i 01 -1 01 1+2i 01 1-2i 01 -1 01 1-2i 01

01 01 01 3i 01 -3 01 3i 01 -3i 01 -3 01 -3i 01

01 01 10 -1+2i 01 -2+i 01 i 01 -i 01 -2-i 01 -1-2i 01

01 01 11 i 01 -2-i 01 -1+2i 01 -1-2i 01 -2+i 01 -i 01

01 10 00 i 01 i 10 1 00 1 00 -i 10 -i 01

01 10 01 -1+2i 01 -2+i 01 i 01 -i 01 -2-i 01 -1-2i 01

01 10 10 -2+i 10 -1+2i 10 -i 10 i 10 -1-2i 10 -2-i 10

01 10 11 -1 10 -1 01 -1 11 -1 11 -1 01 -1 10

01 11 00 1 00 -i 11 i 01 -i 01 i 11 1 00

01 11 01 i 01 -2-i 01 -1+2i 01 -1-2i 01 -2+i 01 -i 01

01 11 10 -1 10 -1 01 -1 11 -1 11 -1 01 -1 10

01 11 11 -i 11 -1-2i 11 -2+i 11 -2-i 11 -1+2i 11 i 11

10 00 00 1 00 2+i 00 2-i 00 2+i 00 2-i 00 1 00

10 00 01 i 01 i 10 1 00 1 00 -i 10 -i 01

10 00 10 -1 10 1+2i 10 1-2i 10 1+2i 10 1-2i 10 -1 10

10 00 11 -i 11 1 00 -i 10 i 10 1 00 i 11

10 01 00 i 01 i 10 1 00 1 00 -i 10 -i 01

10 01 01 -1+2i 01 -2+i 01 i 01 -i 01 -2-i 01 -1-2i 01

10 01 10 -2+i 10 -1+2i 10 -i 10 i 10 -1-2i 10 -2-i 10

10 01 11 -1 10 -1 01 -1 11 -1 11 -1 01 -1 10

10 10 00 -1 10 1+2i 10 1-2i 10 1+2i 10 1-2i 10 -1 10

10 10 01 -2+i 10 -1+2i 10 -i 10 i 10 -1-2i 10 -2-i 10

10 10 10 -3 10 3i 10 -3i 10 3i 10 -3i 10 -3 10

10 10 11 -2-i 10 i 10 -1-2i 10 -1+2i 10 -i 10 -2+i 10

10 11 00 -i 11 1 00 -i 10 i 10 1 00 i 11

10 11 01 -1 10 -1 01 -1 11 -1 11 -1 01 -1 10

10 11 10 -2-i 10 i 10 -1-2i 10 -1+2i 10 -i 10 -2+i 10

10 11 11 -1-2i 11 -i 11 2-i 11 2+i 11 i 11 -1+2i 11

11 00 00 2-i 00 2-i 00 1 00 1 00 2+i 00 2+i 00

11 00 01 1 00 -i 11 i 01 -i 01 i 11 1 00

11 00 10 -i 11 1 00 -i 10 i 10 1 00 i 11

11 00 11 1-2i 11 1-2i 11 -1 11 -1 11 1+2i 11 1+2i 11

11 01 00 1 00 -i 11 i 01 -i 01 i 11 1 00

11 01 01 i 01 -2-i 01 -1+2i 01 -1-2i 01 -2+i 01 -i 01

11 01 10 -1 10 -1 01 -1 11 -1 11 -1 01 -1 10

11 01 11 -i 11 -1-2i 11 -2+i 11 -2-i 11 -1+2i 11 i 11

11 10 00 -i 11 1 00 -i 10 i 10 1 00 i 11

11 10 01 -1 10 -1 01 -1 11 -1 11 -1 01 -1 10

11 10 10 -2-i 10 i 10 -1-2i 10 -1+2i 10 -i 10 -2+i 10

11 10 11 -1-2i 11 -i 11 -2-i 11 -2+i 11 i 11 -1+2i 11

11 11 00 1-2i 11 1-2i 11 -1 11 -1 11 1+2i 11 1+2i 11

11 11 01 -i 11 -1-2i 11 -2+i 11 -2-i 11 -1+2i 11 i 11

11 11 10 -1-2i 11 -i 11 -2-i 11 -2+i 11 i 11 -1+2i 11

11 11 11 -3i 11 -3i 11 -3 11 -3 11 3i 11 3i 11


