An Adder for a Redundant Digit Arithmetic Unit

Hossam A. H. Fahmy

Michael J. Flynn

Electronics and Communications
Department

Computer Systems
Laboratory

Cairo University, Egypt

Stanford University, USA

General Outline

- Time delays in floating point addition
- Proposed system
- Modeling and comparisons
- Simulation results

Time delays in the blocks of an adder (one-path algorithm)

Time delays in the blocks of an adder (two-path algorithm)

Time delays with redundancy

Time delays with redundancy

Time delays with redundancy

The proposed SD format for floating point numbers

General blocks of the proposed adder (two-path algorithm)

Background on SD numbers

Ordinary Signed Digit (SD) numbers represent a number in radix r>2 with digits $x_i\in\{-\alpha,\cdots,-1,0,1,\cdots,\alpha\}$ where $\frac{r}{2}<\alpha< r$

For example, in decimal where r = 10 we have $1\overline{8} = 0$ 2.

Assuming r = 10 and $\alpha = 9$ addition goes as follows:

$$p_i = x_i + y_i \qquad c_i = \begin{cases} -1 & \text{if } p_i \leq -\alpha \\ 1 & \text{if } p_i \geq \alpha \\ 0 & \text{otherwise} \end{cases}$$

$$w_i = x_i + y_i - \beta c_i$$

$$s_i = w_i + c_{i-1}$$

Using as a radix $\beta = 16$ and $\alpha = 15$,

$$x_i, y_i, s_i \in \{-15, \cdots, 15\}$$

 $p_i \in \{-30, \cdots, 30\}$

In the case of a positive overflow, $x_{i_4} = y_{i_4} = 0$ but $p_{i_4} = 1$. Hence, $w_i = p_i - 16 = p_i - (10000)_2$.

For
$$c_i=\pm 1$$
, $w_{i_4}=\overline{p}_{i_4}$

- 1. $c_{i(1)}$ is set for a positive overflow or a result equal to +15. Both of these occur only if $x_{i_4}=y_{i_4}=0$.
 - The adder calculating $x_i + y_i + 1$ has a positive overflow if $x_i + y_i \ge 15$
- 2. $c_{i(-1)}$ is set for a negative overflow or a result equal to -15.
 - \bullet An output of -15 results if one input is -15 and the other is zero or both inputs are negative and their sum equals -15.
 - \bullet The inputs being -16 is a don't care condition.

Possible outcomes for one digit

For decimal floating point operations, use $\beta = 10$ and $\alpha = 9$.

$$x_{i}, y_{i}, s_{i} \in \{-9, \dots, 9\}$$

$$p_{i} \in \{-18, \dots, 18\}$$

$$c_{i(1)} = \overline{x}_{i_{4}} \overline{y}_{i_{4}} (p_{i_{4}} + p_{i_{3}} (p_{i_{2}} + p_{i_{1}} + p_{i_{0}}))$$

$$c_{i(-1)} = x_{i_{4}} y_{i_{4}} \overline{p}_{i_{4}} + (x_{i_{4}} + y_{i_{4}}) p_{i_{4}} \overline{p}_{i_{3}}$$

Complete binary floating point adder comparisons: Time delay versus significand width for different fan-in

- A scalable CMOS technology was used to design a binary floating point adder and multiplier at the transistor level with n=53, f=3 and r=4.
- Both designs perform all the IEEE rounding modes.
- Both designs were simulated for functionality at the logic level using *verilog* and for speed at the transistor level using *irsim*.

Circuit statistics and simulation results

	Floating point adder		
number of nodes	46845		
NMOS transistors	63589		
PMOS transistors	61649		
Model delay	34 <i>FO4</i>		
Sim delay $(0.6\mu m)$	14ns		
	(33.35 <i>FO</i> 4)		
Sim delay $(0.3 \mu m)$	6ns		
	(32.40 <i>FO4</i>)		

Cost?

		n = 60	n = 80	n = 120
r = 4	width increase(%)	33.3	31.6	29.6
	speed up (%)	10.5	12.5	16.7
r = 8	width increase(%)	29.3	21.1	18.5
	speed up (%)	7.9	10	14.3

Floating point adder trade off when f = 3.

Conclusions and Contributions

- A new internal format based on SD numbers and the corresponding floating point unit adder are presented
- The SD adder is adapted to perform decimal addition
- Through analytical modeling and transistor simulations, the proposed designs perform better than the conventional ones for the double precision numbers.