
The Case For a Redundant Format in Floating Point Arithmetic

Hossam A. H. Fahmy
hfahmy@arith.stanford.edu

Michael J. Flynn
flynn@arith.stanford.edu

Computer Systems Laboratory, Stanford University, USA

Abstract

This work uses a partially redundant number system as
an internal format for floating point arithmetic operations.
The redundant number system enables carry free arithmetic
operations to improve performance. Conversion from the
proposed internal format back to the standard IEEE for-
mat is done only when an operand is written to memory.
A detailed discussion of an adder using the proposed for-
mat is presented and the specific challenges of the design
are explained. A brief description of a multiplier and di-
vider using the proposed format is also presented. The pro-
posed internal format and arithmetic units comply with all
the rounding modes of the IEEE 754 floating point stan-
dard. Transistor simulation of the adder and multiplier con-
firm the performance advantage predicted by the analytical
model.

1. Introduction

Addition is the most frequent arithmetic operation in
numerically intensive applications. Multiplication follows
closely and then division and other elementary functions.
This work presents several techniques to improve the effec-
tiveness of floating point arithmetic units in general but with
a focus on addition.

A partially redundant number system was previously
proposed [5] for use as an internal format within the float-
ing point unit and the associated registers. The format is
based on the single and double precision formats of the
ANSI/IEEE standard [1]. However, in the proposed format
each group of

�
bits of the significand are represented re-

dundantly as a� bit signed digit number in���� � � � � � � ���
using two’s complement form. The fifth bit (extra bit) repre-
sents a negative value with the same weight as the least sig-
nificant bit of the next higher group. This is shown for the
string of bits	� � 	
 � 	� � 	 �� 	� in Fig. 1. This extra bit,	�,
is saved in the register to the right of the least significant bit
in the next higher group and to the left of	
. As with IEEE
formats, the significand is always positive so there is no

Sticky

Round

Guard

Sign Biased exponent

+/− e + bias

15 bits, bias = 16384

G SLa0a1a2a3

a4

Significand

sig.

R

74 bits90bits:

Figure 1. The proposed signed digit format for
floating point numbers.

need for the extra bit in the most significant digit. The num-
ber is also always normalized in the proposed format. De-
normalized IEEE numbers are normalized in the conversion
process upon loading into the register file. Each group of

bits represents one base�� digit and therefore, the expo-
nent is applied to base�� rather than base� as is used in the
normal IEEE format. The proposed format is in the form,�������� � ���� ��� �� �� ! "�#�#� ��� ��� $ ��%&'()�*�. The
guard, round and sticky (+,-) bits are saved in the register
file with the unrounded result. The result is then correctly
rounded according to the IEEE standard’s rules in the fol-
lowing operation when it is used or saved to the memory.
This deferred rounding technique moves the rounding com-
putation off the critical path and allows it to be overlapped
with the exponent difference calculation in the adder.

In general, SD numbers allow carry free addition by
using redundant number representations. Eliminating the
carry propagation significantly reduces the latency of arith-
metic operations. The conversion from binary to SD form
is trivial since the binary format is usually a valid SD rep-
resentation. However, converting a SD number back into a
non-redundant form involves a carry propagation. SD num-
bers are not commonly used in arithmetic circuits since the
SD to binary conversion requires a carry propagation. The
proposed system efficiently hides this time delay by over-
lapping the SD number to binary conversion with the mem-
ory store operations, thus removing it from the critical path.

More details of the conversion to and from the proposed
internal format to the IEEE format were presented in our
earlier work [5].

The format presented above with its specific use of a base
�� signed digits is obviously a special case of more general
signed digits [13] where another base or even a mix of dif-
ferent bases [15] can be used. The case of using another
base is discussed briefly in section 4 below. The method-
ology of thinking about the algorithms and trade-offs dis-
cussed in this work apply to the general case as well. The
specific format presented above is what we implemented
in transistors to prove our claims regarding the speed im-
provement. We deemed this specific format as a practical
compromise to give enough speed improvement with a rea-
sonable increase in the area of the register file. The issue of
the optimal redundant format to use will obviously depend
on the requirements on speed, area and power consumption.
That issue is beyond the scope of the current work.

In the following sections, the presented format is used
to build efficient arithmetic circuits. Section 2 explains the
details of the floating point addition unit. Two design chal-
lenges due to the redundant format, namely the leading digit
detection and the rounding, are discussed in section 3. Sec-
tion 4 describes the analytical time delay modeling of the
addition unit and discusses the rationale for postponing the
rounding and for using a hexadecimal based exponent. The
multiplication, division and other elementary functions are
computed using the units presented in section 5. Then sec-
tion 6 provides the simulation results for both the adder and
the multiplier. Finally, in section 7 conclusions of this work
are presented.

2. Floating point addition

In the current state-of-the-art high performance floating
point adders, two-path algorithms are used with integrated
rounding similar to the designs proposed by Farmwald [7]
and Quach [17]. These adders perform both addition and
subtraction. An effective subtraction occurs when both
operands are of the same sign and the required operation is
a subtraction or when the operands differ in their signs and
the operation is an addition. In the case of effective subtrac-
tion and an exponent difference of zero or one, a few of the
leading digits of the result might become zero. For this case
of leading zero digits, there is a need for a left shift of the
result for normalization. The two-path algorithm separates
this specific case into a path with a specialized left shifter
while the general case of operands passes through the reg-
ular path. The special path is called the cancellation path
(where the leading digits are possibly canceled) or the close
path (where the exponents are close to each other) while the
regular path is called the far path. The adder design pre-
sented here is following a similar approach and is using a

rnd(MA) rnd(MB) −rnd(MB) −rnd(MA)

MUX
0 1

MUX
0 1

Sub Sub

MUX
0 1

Right
shifter

MUX
0 1

MUX
0 1

EA EB

1

15 b Add

> 15

SD adder

SD adder

MUX
0 1

MUX
0 1

MA MB

swap

0

shift amount

swap

MUX

Output

L

D

D

pos neg

left

shifter

MB

Far path

MA

Close path

A−s(B)

A−B B−A

B−s(A)

shft1

shft1

Figure 2. Block diagram of the two-path adder.

two-path algorithm as shown in the block diagram of Fig. 2.
In the presented design, the cancellation path is used only
in the case of an effective subtraction with an exponent dif-
ference of zero or an effective subtraction with an exponent
difference of one and a cancellation of some of the leading
digits occurring in the result. In all other cases, the far path
is used.

The far path of the proposed adder is similar to the far
path of other algorithms presented in the literature. The
unique aspects of the proposed adder are: first, the use of
a hexadecimal base for the exponents; second, the location
of the rounding logic in parallel with the exponent differ-
ence and third the use of signed digit numbers in the sig-
nificand. The hexadecimal base of the exponents makes the
right shifting for alignment of the two operands a shift to a�
-bit boundary only. So, instead of using an�-way shifter in

the conventional adders an�� ���-way shifter is used here.
Such a reduction in the complexity of the shifter reduces its
time delay as discussed below. The parallel execution of the
rounding logic with the exponent difference logic takes the
rounding away from the critical path of the adder. It is pos-
sible to simultaneously round and negate the number and
this is what is done in the presented design to prepare the
operand for the SD (signed digit) adder.

A signal indicating an effective subtraction selects the
operand or its negative and a signal indicating which of the
operands has a larger exponent allows for swapping them.
Then, the operand with the smaller exponent is shifted to the
right for alignment and the bits that are flowing out of the
shifter are used to calculate the guard, round and sticky bits.
Only the least significant bits of the exponent difference are
used to indicate the shift amount. If the exponent difference
is large enough to completely shift out the smaller operand
a zero is forced as the second operand into the adder.

The result of the SD adder may need a normalization

shift by one digit to the right for the case of effective ad-
dition and an overflow. The result may otherwise need a
normalization shift by one digit to the left for the case of an
effective subtraction and cancellation of the Most Signifi-
cant Digit (MSD). This cancellation of only the MSD can
occur even when the exponent difference is larger than one.
The SD adder block produces the result and three signals
indicating the need for no shift, a shift to the left or a shift
to the right. The guard, round and sticky bits are calculated
speculatively dependent on the shifting possibilities. The
multiplexer unit responsible for choosing between the far
and cancellation paths receives those different signals and
speculative results and chooses the final result among them
in case it chooses the far path.

In the cancellation path the exact exponent difference is
not calculated but the least significant bit of each of the
two exponents is examined. If the two exponent bits are
found to be identical the difference of the exponents is spec-
ulated to be zero and the direct subtraction of the operands
is needed. If, on the other hand, the two exponent bits are
not identical the difference is assumed to be one and the
subtracter should produce a result equal to one operand mi-
nus the other operand shifted by one bit to the right. The
direct subtraction in the case of zero exponent difference
may lead to a negative result if the significand of the second
operand is larger than the significand of the first operand.
To remedy for this negative result in conventional adders,
the sign of the floating point result is flipped and the bits
representing the result are negated. In the presented design,
the subtracter produces the result and its negative and then
chooses one of them at the end depending on the sign of the
result.

So, assuming the two operands to be labeled� and� ,
all the possible combinations are produced in the presented
design:� � � , � � ���� � �� �, � � � and� � ���� � �� �.
Then, depending on the speculation of the exponent differ-
ence, either the direct subtraction or the one involving a
shift is chosen. Since a complete calculation of the expo-
nent difference does not occur in the cancellation path, the
rounding is done in conjunction with the significand sub-
traction. A round digit is computed for each operand and is
used within a signed digit subtracter to perform the subtrac-
tion. A Leading Digit Detector (LDD) is used to calculate
the shift amount needed to normalize the result. This shift
amount is applied to two shifters one shifting the result and
the other shifting the negative of the result. The sign of the
leading digit is detected and the correct sign for the floating
point result is decided. The result and its negation as well
as a signal indicating the sign of the leading digit are for-
warded to the multiplexer unit selecting between the can-
cellation path and the far path. This unit then makes the
decision on the path to choose and appropriate result from
each path.

3. Challenges: The leading digit detection and
rounding

In an effective subtraction in the close path one or more
of the leading digits in the result may become zero. Then,
in order to normalize the result, the leading non-zero digit
must be detected and the result must be normalized by left
shifting the significand by the number of leading zeros.
All floating point adders include circuits to either detect or
predict the position of the leading non-zero digit after the
subtraction is performed. The prediction circuits like the
work of Bruguera and Lang [2] or the work of Quach and
Flynn [16] operate on the adder’s operands in parallel with
the significand addition. It is to note that in both schemes
the original operands are not redundant while the prediction
circuits are working on a redundant representation because
the prediction is done before the result of the adder is avail-
able. In a redundant number there are several patterns that
evaluate to a string of leading zeros. A prediction circuit
must then involve a technique for matching all such patterns
and taking appropriate actions. If, on the other hand, a de-
tection scheme was used on the non-redundant result of an
adder, there will be no need for complicated pattern match-
ing. Since in the proposed design for the floating point
adder signed numbers are used for the inputs and output,
even a detection scheme must perform some pattern match-
ing.

A few possible patterns become the hard cases in detect-
ing the first non-zero digit. In fact, the leading zeros may be
expressed directly as zeros or indirectly as leading insignif-
icant digits: a leading� followed by ���s or a leading��
followed by ��s. The leading� (��) can be converted to
a zero and borrowed into the neighbor��� (��) digit posi-
tion as a�� (���). Since�� � �� 	 � (��� � �� 	 ��),
the zero propagation may continue into lower significance
digits. The following example illustrates how leading non-
zero digits may be leading insignificant digits. Assuming
 �
� �� , �� �� � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � �

Another pattern is��� � � � �� � � � 	 � �� � � � �� � � �. This
pattern and its dual������ � � � �� � � � are what causes a
fine adjustment in the case of the previous work [16, 2].
The fine adjustment is basically to indicate that the location
of the leading digit should be shifted by one position. We
can mentally think of detecting the leading zeros and the
leading insignificant digits as the first step followed by a fine
adjustment step. In the fine adjustment step if the leading
digit is � and is not followed by another positive digit but
by � then we must detect the sign of the remainder of the
number. If that sign is negative, a fine adjustment is needed.
The dual case holds for a leading��.

The need to detect special cases for�� followed by���
or �� followed by ��� can be eliminated by the use of
some recoding techniques similar to what was presented
in the work on recoders for partial compression [3, 4]. In
the section discussing rounding and leading digit detection,
Daumas and Matula state [4]: “Partial compression also re-
alizes virtually all the benefits of leading digit deletion.”
The word virtually is important; partial compression does
not provide a solution for the fine adjustment cases. In fact,
from a complexity and time delay point of view, getting
the exact bit location of the leading one is essentially the
same as doing a carry propagation. The fine adjustment is
hence equivalent to transforming the redundant representa-
tion into a non-redundant one. As described by Quach and
Flynn [16], parallel addition and leading one prediction are
both problems of bit pattern detection. They also identified
sticky bit computation as the third problem in the category
of bit pattern detection.

What is proposed in this work is to perform only the
coarse adjustment of finding the leading digit by eliminating
any leading zeros or insignificant digits. The main advan-
tage of using a signed digit number system is to eliminate
the carry propagation from the critical path. Thus, intro-
ducing another circuit similar in complexity (fine adjust-
ment) instead of the carry propagation in the critical path
will defeat the purpose. Hence, the fine adjustment is left
to the rounding unit and a signed sticky digit (similar to
what Matula and Nielsen [10, 12] proposed) is used there.
The rounding occurs in parallel with the exponent differ-
ence and is not sequentially after the addition, so it is out of
the critical path.

Based on the work of Daumas and Matula [3, 4], two re-
codings are defined to delete the leading insignificant digits.
The N-recoding is where a negative one could be added to
the digits and the P-recoding is where a positive one could
be added. More specifically, for two consecutive digits of
the result,

� � � ��� ��� ��� ��� ����� ����� � � �
��� �����

The N-recoding is defined as reseting� 	
�� and�	� to � if
they were both�. This is mathematically correct since� 	
��
has a negative value. This recoding can create digits that
are equal to���, however, this is not important since the
recoded format is only used within the leading digit detector
(LDD) circuits and even with such “out of bound” digits the
position of the leading digit can be correctly estimated. The
N-recoding when applied to the case of repeated��� would
be as follows assuming that the digit

�
is positive:

�� �� � �� � � � � � � � � �
���� � �� ��� ��� ��� � � � ��� �� �� �� �� � � �
��� � � � �� � � � � � �
���� �� � � � � � � � � � �

If the digit � is equal to�, then all the insignificant� fol-

lowed by negative digits have been eliminated by this N-
recoding. If the digit

�
is negative then the result of the

recoding will not be� � � � � but rather
��

will be canceled ef-
fectively giving a result of� ��� � �� � � �. This feature is of
value since it ensures that the number is truly normalized.
A leading digit of � with a negative fractional part is not
the normalized format. The condition for the N-recoding
to change the bits is� 	� 	 � 	
�� 	 � and hence its out-
put is given by��	� 	 � 	� � 	
�� � ��	
�� 	 �	� � 	
�� while the
remaining bits of the digit pass unchanged.

The P-recoding on the other hand is defined to elimi-
nate the case of insignificant leading�� followed by posi-
tive digits. Referring to the two consecutive digits above,if
� 	� 	 � and� 	
�� 	 � then we can split�	
�� to � and��,
add the� to �	 and keep the�� with � 	
� as its new�	
�� .
This split is to occur only if� 	
� is not exactly equal to zero
in order to prevent the new� 	
� from becoming���. Ap-
plying P-recoding to the case of repeated digits of�� the
result is:

�� �� � � � � � � � � � � �
���� � � � � � �� �� �� �� � � �
��� � � � � � �� � � � � � �
� ��� �� � � � � � � � � � � �

In this, the digit
�

is assumed negative (
�� 	 �) and the

whole result is negative at the end. If
�

is positive then one
more digit would become zero and the result will be� �� �
�� � � � �. Note that even in this case, the sign of the result is
still negative since

 �
� ��. In general due to the choice of
base and possible values in this number system, any number
is of the sign of its leading non-zero digit [14]. The N and
P-recodings do not alter that.

The condition mentioned above for the P-recoding to
change the bits is� 	� 	 �� �	
�� 	 � and 	
� 	 �, where
 	
� is an indicator to show if the digit� � � is not zero.
Let !	 	 � 	� �	
�� 	
�, then if !	 	 � the output of the
P-recoding for digit� should be�	 � � instead of� 	. Ob-
viously, !	 could be added to�	 or, better, it could be used
as a select line in a multiplexer which has� 	 and� 	 � � as
its inputs. This! 	 signal also affects the most significant bit
of the lower adjacent digit�	
�. If ! 	 	 � then the output
of the P-recoding for this bit,�"	
�� , is determined just by
the outcome of the multiplexer choosing between�	
� and
� 	
� � � depending on!	
�. If, on the other hand,!	 	 �
then the two possible cases of!	
� need to be analyzed.

#	
� 	 �: �"	
�� 	 � 	 � 	
�� (remember that� 	
�� 	 �
for ! 	 	 �).

#	
� 	 �: then two conditions are possible:

sign bit of � 	
� � � is �: Then, as above,�"	
�� 	 �.
sign bit of � 	
� � � is �: This means that due to the

added� an overflow occurred which has a value
of ��. That positive overflow is canceled out by

the �� resulting from the P-recoding splitting of
the original� in � 	
�� , thus�"	
�� 	 �.

Hence in all the cases, if! 	 	 � the resulting�"	
�� bit is
the inverse of the bit coming out of the multiplexer choosing
between� 	
� and�	
� � �.

As is the case for the N-recoding an “out of bound” digit
value can occur. In this case, a value of��� results if the
pattern of digits� �� �

with �� 	 � and
�� 	 � are en-

tered into a P-recoder. Again, this is not problematic since
this recoded format is only within the LDD circuits and the
position of the leading non-zero digit will be correctly de-
tected as described below. However, this is why it was im-
portant to note above that in P-recoding, this split of the
zero in�	
�� is to occur only if�	
� is not exactly equal to
zero in order to prevent the new� 	
� from becoming���.
Otherwise, there would have been a difficulty to distinguish
between the out of bound��� and the��� resulting from
subtracting�� from a digit that is already zero.

The condition! 	 	 � 	� � 	
�� 	
� is not a tight con-
dition. The P-recoding causing insignificant digits dele-
tion occurs when� 	
� 	 �� (� �����	�) and �	 	 ��
(������	�) or � 	 	 �� (assuming that it is preceded
by some� 	 ��) . So, the strictest condition is! 	 	
�	� � 	� � 	� � 	� �	
�� � 	
�� � 	
�� � 	
�� � 	
�� . Other conditions
between those two extremes can also be used like for ex-
ample! 	 	 � 	� � 	� � 	� � 	� �	
�� � 	
�� .

For each digit after the recodings, an indicator� 	 is used
to specify the sign of the digit. Another indicator 	 is kept
to indicate if the digit is not zero. The final decision of the
LDD is based on those� 	 ’s and 	 ’s. The first digit that has
 	 	 � is the leading digit and its sign is the corresponding
� 	.

Either the N-recoding or the P-recoding can be done
first, there is no strict order. For example, using! 	 	
�	� � 	� � 	� � 	� �	
�� � 	
�� . The case of

� �� ���� yields:

!"�	 	 !	
�"�	 	 �� 	� �� � 	� � !	� � �! 	
 "�	 	 �� 	� �� � 	� � � 	� � � 	� � � 	� � � 	� � 	
�� �! 	

� ! 	!	� � �� 	� �� � � 	� �

And the case of� �� ���� yields:

!"	 	 !	
��"	 	 �� 	� �� � 	� � !	� � �!	
 �"	 	 �� 	� �� � 	� � � 	� � � 	� � � 	�

� � 	� �� 	
�� � !	
� ��! 	 � !	�	� �� � 	�

The leading non-zero digit is then determined by using
the bits out of the recodings. A tree network can be used

Table 1. Rounding value for the four IEEE
modes and different fractional ranges

���� 	
� �

�
���	
� 	 ��	
� 	
� � � �
� ��
�
� �
�
� �
� ��
�
� �
�
� �
� �� � � � � �
� �
�
� �� � � � � � �� � � � � �� � � � � � �� �� � � � � � �� �� � � � � � � � � � �

to encode the position of the first non-zero digit and this
amount is forwarded to the left shifters to normalize the re-
sult. Obviously, the� bits out of the recodings should be
shifted as well. The final sign of the number is that of the
leading digit as determined by its� bit. Based on this either
the result or its negation is chosen and the sign of the whole
floating point result is affected.

As mentioned earlier, the fine adjustment is performed
in the rounding stage. This is the other piece of challeng-
ing logic in the design at hand. In the proposed format the
MSD has four bits. The rounding stage must determine
the leading one among those four bits in order to decide
on the approximate bit location for the rounding. The fine
adjustment is then when another circuit determines if the
remaining part of the number below the leading bit of the
MSD is positive or negative. Those two indicators allow for
the decision on the correct bit location to apply the IEEE
rounding. A fractional value� 	 at bit location� of a signed
digit binary number� � � � 	� �� 	� 	
� � � � �� can be defined as
� 	 	 ���� 	
�� �� �� � �� ��� 	 . The decision of the digit added
for rounding is then determined by the fractional value at
the rounding position. However, the value to add in order
to achieve the correct rounding does not depend only on the
fractional range but also on the IEEE rounding mode. In RP
and RM modes, the sign of the floating point number affects
the decision as well. Any such rounding of the proposed for-
mat does not propagate a carry through the whole number
as the rounding in conventional adders do. SD addition is
used instead and the addition of a� � digit representing the
rounding decision is easily handled. The decision is accord-
ing to Table 1 where� is the bit at the rounding location. It
is important to note that in this format the rounding to zero
mode is not a simple truncation. If the fractional value is
negative a�� must be added to perform the correct round-
ing to zero.

In our design the fractional range is estimated and the
rounding value decided speculatively for each bit location
in the Least Significant Digit (LSD). The resulting potential
new LSDs after adding each rounding value are also calcu-
lated. Then, based on the circuits indicating the leading bit
of the MSD and the fine adjustment the final rounded LSD

Table 2. Time delay of various components in
terms of number of FO4 delays.

Part Delay
Adder � � � � ���� � �� � �	�

 ��
�� �� compressors ��� � �� counters �
Mux, in to out �
Mux, select to out ����� �� �
 � �
Signed digit adder � � � � ���� � �� � � �� ��

 ��

� ����� �� � ��

Shifter ���� � �� �

Other ���� � �� �

(no design details)

is chosen.

4. Time delay modeling and rationale for post-
poned rounding

The current authors had previously proposed [6] a para-
metric time delay model to compare floating point unit im-
plementations. In that analytical model, the operand width
�, the fan-in� of the logic gates and the radix� of the redun-
dant format are used as parameters. The model gives an es-
timate of the number of equivalent elementary delay units in
the critical path of the floating point hardware. The floating
point unit delay is presented in “fanout of 4”(FO4) delays,
or the delay of an inverter driving a load that is four times its
own size. The model is validated through transistor simula-
tion of different circuits. The different parts of the modelare
summarized in Table 2. Using units ofFO4 delays makes
the model independent of the technology scaling to a large
degree since this elementary gate scales almost linearly with
the technology [11]. However, the model does not include
any assumptions about long wires across the chip and the
time delay associated with them.

This simple model allows us to have a sense of the com-
plexity of some parts of the floating point addition algo-
rithms. We see that shifting and adding are operations
whose time delay is an� ���� � �. In conventional designs,
rounding adds a small value to the result and could cause a
carry propagation through the whole number and it is also
an � ���� � � operation. It is usually combined with the ad-
dition step [17] so that both time delays overlap. Another
part that is of� ���� � � is the leading one prediction (if fine
adjustment is performed) as mentioned in section 3. Simply
using a redundant format that makes the significand addi-
tion independent of� will not enhance the speed by much
if nothing is done to all those other parts. That is why post-
poned rounding and the other features in the proposed two-
path adder are integral to the design and are as important as
the redundant format. To quantify this argument let us use
the assumptions of the analytical model to estimate the time
delay of the adder design described above.

The critical path of the design starts with the exponent
difference. This is a�� bit adder and not an�� bit one
as in conventional adders using double precision because
of the special format used in this design. In fact, the ex-
ponent width in this format���� � is equal to the con-
ventional exponent width���� (which is dependent on�
as specified by the IEEE standard) expanded to allow for
the normalization of denormalized numbers minus���� �
when the radix is�� . The significand in this format is
also larger than the corresponding significand for the con-
ventional designs because of the redundancy. The signif-
icand width is ��� � � �� � �� � �. The swapping mul-
tiplexers must be as wide as the significand and the out-
put of the exponent difference is used to drive the select
lines. Up to this point, the delay is estimated to be� � � �
���� �
� � �	�"� �

�
�� ���� ����� � ��� � � ��� ��� ���� �FO4

delays. The operand then passes through a��� �-way shifter
which adds����� � ��� � �� FO4 delays. The following mul-
tiplexer adds one moreFO4 delay. The signed digit adder
takes� � � � ���� �
� � ��� �� � � ��� � ����� �� � ��� FO4
delays. The select lines of the last multiplexer partially de-
pend on the output of the adder in order to determine if
there is a need to adjust to the right by one bit. Hence,
there is a delay from the select lines to the output equal to
����� � ��� � � �� � �� � ��� � � FO4delays. The total delay
for this design is thus:

 	 ��
� � � ���� �
� � ����� �

�
� � ���

� � � ����� � ���
� � �� � �� � ���

� ����� � ���
� ��

� � � ���� �
� � �� � �
�

� � ��� � ����� �� � ���

From this derivation we can evaluate the benefit coming
from each of the novel ideas in this design: the postponed
rounding, the use of a higher radix base for the exponents
and the use of an SD adder.

Once the significand addition is independent of� by us-
ing redundancy, the rounding delay must be masked by the
delay of another part that is as long or longer. Otherwise, it
will add to the overall delay of the adder. The exponent dif-
ference and multiplexers time delay (second line and half of
the third line of the equation) are both� ���� � � operations
that are essential and that are already on the critical path.
Performing the rounding in parallel with them seems then
to be the best choice. Hence, the rounding delay does not
appear at all in the equation and is effectively hidden.

The higher radix base for the exponent has an effect on
the alignment shifter which only shifts then to digit bound-

aries. The fourth line of the multi-line equation above cap-
tures this as a delay of����� � ��� � �� rather than����� �� �� in
conventional adders. Shifting is still an� ���� � � operation
but its time delay is reduced by about���� � when using a
higher radix.

The effect of the SD adder is shown in the fourth line
(and part of the constant of the first line) where the terms
� � � � �����
� � ��� �� � � ��� � ����� �� � ��� appear instead
of � � � � ���� �
� � ��� � � ��� in a conventional adder.

It is clear that the effect of� on the shifter delay is the
opposite of its effect on the SD adder delay. The amount
of redundancy (reflected by�) also has an effect on the area
of the circuit and the required increase in the register file
as noted in section 1. Hence, depending on the choice of�
and� for the implementation, the benefit from using a dif-
ferent radix for the exponent may be more than the benefit
from the redundancy or vice versa. To compare this design
to other designs some assumptions regarding those param-
eters are needed. For practical CMOS designs, the fan-in
is usually limited to
 or

�
. The majority of the floating

point adders are currently designed to handle double preci-
sion numbers (� 	 �
) or larger. For this range, the design
proposed with� set to

�
or � provides the best performance

as presented in our previous work [6].

5. The multiplication, division and elementary
functions

The design of the proposed multiplier is shown in Fig. 3.
The least significant digit and the rounding bits of each
operand are used to determine the rounding values�� and
�� . Simultaneously, the multiplier

�
operand is forwarded

to a modified Booth recoding block and the multiplicand�
is used to generate the partial products. The multiplication
proceeds as�� � �� � �

� � �� � 	 � � � ��
� � ��� � �� �� .

The rounding correction block produces the last three terms
of this equation and delivers them to the reduction tree with
the rest of the partial products.

As noted in section 1, the extra bits in the format are
negatively valued. Hence, for the multiplier operand

�
, the

Booth� recoding scheme is modified to take into consider-
ation those extra negative bits. The extra negative bits of the
multiplicand,� , are dealt with in a slightly different way.
The significand of� is taken as having two components:

�
the positively valued bits and� the negatively valued extra
bits. The output of the Booth recoders are used as select
lines in multiplexers to generate the required partial prod-
ucts. The positive vectors are then summed by a tree of�� � �� compressors while the negative vectors are summed
by a separate tree of

�� � �� compressors. The output of each
tree is in carry save format. The positive and negative vec-
tors are then added using a

�� � �� compressor followed by
a signed digit adder to form the final result.

[4:2]

[4:2]

[4:2]

[4:2]

[4:2]

[4:2]

[4:2]

[4:2]

[4:2]

Mux

Output

Booth recoding

−ve PP

generate

+ve PP

generate

Y

X

Rounding correction

r

r

x

y

SD

adder

shft1shft1

G, R, S

Figure 3. General block diagram of the multi-
plier.

To perform division and other elementary functions, a
design from the literature is adapted [8, 9]. This arith-
metic unit provides rapid convergence based on higher-
order Newton-Raphson and series expansion techniques. To
adapt the original design to the format proposed here, a
short adder is used to eliminate the redundancy from the
most significant part of the divisor operand by subtract-
ing the extra bits. This non-redundant part is used to ac-
cess the lookup table while the rest of the operand is fully
transformed into a non-redundant form. In parallel, another
adder is used to convert the dividend into a non-redundant
form as well. The unit then works on those two operands as
in the original design and at the end a signed digit adder is
used instead of the regular carry propagate adder. The delay
of the proposed unit is not much different from the original
design since the extra delay of the short adder at the start is
compensated by the reduced delay in the final addition.

6. Simulation results

A scalable CMOS technology was used to design the
adder and the multiplier at the transistor level with� � 	
,� �
 and � � implementing all the IEEE rounding
modes.

Both circuits mostly use static CMOS technology gates
with only few parts using NMOS pass transistors (namely
the shifters). The designs were simulated for functionality
at the logic level usingverilogand for speed at the transistor
level using the switch level simulatorirsim.

Exhaustive testing of the functionality is obviously not
practical for such designs. However, with the multiplier

Table 3. Circuit statistics and simulation re-
sults for the adder and multiplier.

Adder Multiplier
number of nodes

����� �����
NMOS transistors

����� ������
PMOS transistors

����� ������
Test vectors ���� �����
Model delay ��FO4 ��FO4
Sim delay(� �

���
) ���� �� ����

(�� ���FO4) (�� ���FO4)
Sim delay(� ����)

�
��

� ����
(�� ���FO4) (�� ���FO4)

for example successfully passing more than� �� million ran-
dom test vectors (with a random rounding mode selected for
each test), we are confident enough in the implementation.
Our focus then changed to the speed simulation and sizing
the different gates and transistors. Technology files rang-
ing from � ���� down to� �
�� were used. On that range
of scaling factors, the adder and multiplier perform as pre-
dicted by the analytical model when compared to the delay
of FO4 inverters at the same scaling factor. At that level
fewer test vectors are used due to the longer time the simu-
lation takes. So, only� ��� and�� ��� random test vectors
are used for the adder and the multiplier respectively. The
multiplier being a larger circuit it is tested more thoroughly.
The results are given in Table 3.

7. Conclusions

The proposed internal format with the proposed algo-
rithms and arithmetic units provide a complete arithmetic
system allowing all the IEEE rounding modes. The elimi-
nation of carry propagation from the arithmetic operations
enhances the performance of the functional units. The pro-
posed arithmetic unit architecture includes further enhance-
ments that increase the floating point performance such as
a hexadecimal based number format and postponed round-
ing techniques. The proposed system pushes the perfor-
mance boundary of the design space and provides a means
to achieve the computational demands of numerically in-
tensive applications. For the double (and specially larger)
precision units using standard CMOS technologies, the de-
signs presented here are predicted to yield the highest per-
formance.

References

[1] IEEE standard for binary floating-point arithmetic, Aug.
1985. (ANSI/IEEE Std 754-1985).

[2] J. D. Bruguera and T. Lang. Leading-one prediction with
concurrent position correction.IEEE Transactions on Com-
puters, 48(10):1083–1097, Oct. 1999.

[3] M. Daumas and D. Matula. Recoders for partial compres-
sion and rounding. Research Report No. RR97-01, Lab-
oratoire de l’Informatique du Parallélisme, Ecole Normale
Supérieure de Lyon, Jan. 1997. Available at http://www.ens-
lyon.fr/LIP/Pub/rr1997.html.

[4] M. Daumas and D. Matula. Further reducing the re-
dundancy of a notation over a minimally redundant digit
set. Research Report No. RR2000-09, Laboratoire de
l’Informatique du Parallélisme, Ecole Normale Supérieure
de Lyon, Mar. 2000. Available at http://www.ens-
lyon.fr/LIP/Pub/rr2000.html.

[5] H. A. H. Fahmy, A. A. Liddicoat, and M. J. Flynn. Improv-
ing the effectiveness of floating point arithmetic. InThirty-
Fifth Asilomar Conference on Signals, Systems, and Com-
puters, Asilomar, California, USA, volume 1, pages 875–
879, Nov. 2001.

[6] H. A. H. Fahmy, A. A. Liddicoat, and M. J. Flynn. Para-
metric time delay modeling for floating point units. InThe
International Symposium on Optical Science and Technol-
ogy, SPIE’s 47th annual meeting (Arithmetic session), Seat-
tle, Washington, USA, July 2002.

[7] P. M. Farmwald.On the Design of High Performance Digi-
tal Arithmetic Units. PhD thesis, Stanford University, Aug.
1981.

[8] A. A. Liddicoat. High-Performance Arithmetic for Division
and The Elementary Functions. PhD thesis, Stanford Uni-
versity, Feb. 2002.

[9] A. A. Liddicoat and M. J. Flynn. High-performance floating
point divide. InProceedings of the Euromicro Symposium
on Digital System Design, pages 354–361, Sept. 2001.

[10] D. W. Matula and A. M. Nielsen. Pipelined packet-
forwarding floating point: I. foundations and a rounder.
In Proceedings of the 13th IEEE Sympsoium on Computer
Arithmetic, Asilomar, California, USA, pages 140–147, July
1997.

[11] G. W. McFarland. CMOS Technology Scaling and Its Im-
pact on Cache Delay. PhD thesis, Stanford University, June
1997.

[12] A. M. Nielsen, D. W. Matula, C. N. Lyu, and G. Even. An
IEEE compliant floating-point adder that conforms with the
pipelined packet-forwarding paradigm.IEEE Transactions
on Computers, 49(1):33–47, Jan. 2000.

[13] B. Parhami. Generalized signed-digit number systems:A
unifying framework for redundant number representations.
IEEE Transactions on Computers, 39(1):89–98, Jan. 1990.

[14] B. Parhami. On the implementation of arithmetic sup-
port functions for generalized signed-digit number systems.
IEEE Transactions on Computers, 42(3):379–384, Mar.
1993.

[15] D. S. Phatak and I. Koren. Hybrid signed-digit number sys-
tems: A unified framework for redundant number represen-
tations with bounded carry propagation chains.IEEE Trans-
actions on Computers, 43(8):880–891, Aug. 1994.

[16] N. Quach and M. J. Flynn. Leading one prediction—
implementation, generalization, and application. Techni-
cal Report No. CSL-TR-91-463, Computer Systems Labo-
ratory, Stanford University, Mar. 1991.

[17] N. T. Quach. Reducing the latency of floating-point arith-
metic operations. PhD thesis, Stanford University, Dec.
1993.

