High Performance Floating-Point Unit with 116 bit wide Divider

Guenter Gerwig, Holger Wetter, Eric M. Schwarz, Juergen Haess
IBM Server Division
ggerwig@de.ibm.com, hwetter@de.ibm.com, eschwarz@us.ibm.com, jhaess@de.ibm.com

Abstract

The next generation zSeries floating-point unit is
unveiled which is the first IBM mainframe with o fused
multiply-add dataflow. It supports both S/390 hezadec-
imal floating-point architecture and the IEEE 75/ bi-
nary floating-point architecture which was first imple-
mented in S/390 on the 1998 S/390 G5 floating-point
unit. The new floating-point unit supports a total of 6
formats including single, double, and quadword formats
implemented in hardware. The floating-point pipeline is
5 cycles with a throughput of 1 multiply-add per cycle.
Both hezxadecimal and binary floating-point instruc-
tions are capable of this performance due to a novel
way of handling both formats. Other key developments
include new methods for handling denormalized num-
bers and quad precision divide engine dataflow. This
divider uses a radiz-4 SRT algorithm and is able to
handle quad precision divides in multiple floating-point
and fixed-point formats. The number of iterations for
fized-point divisions depend on the effective number of
quotient bits. It uses a reduced carry-save form for the
partial remainder, with only 1 carry bit for every 4 sum
bits, to save area and power.

1. Introduction

This paper describes a future floating-point unit
(FPU) of a high performance microprocessor which
is optimized for commercial workloads. The FPU
implements two architectures: Binary Floating-Point
(BFP) which is compliant with the IEEE 754 Stan-
dard [1], and Hexadecimal Floating-Point (HFP) as
specified by IBM S/390 Architecture[2] which is now
called z/Architecture[3]. There are a total of 6 formats
supported which include single, double, and quadword
formats for the two architectures as shown in the fol-
lowing table:

Format bits | sign exponent significand | bias
BFP short | 32 1 8 24 127
BFP long 64 1 11 53 1023
BFP quad | 128 | 1 15 113 16383
HFP short | 32 1 7 24 64
HFP long | 64 1 7 56 64
HFP quad | 128 |1 7 112 64

Unlike many other microprocessors, zSeries micro-
processors implement quad precision operations in
hardware, and this includes support for both HFP and
BFP architectures.

Prior zSeries floating-point units have included the
1996 G3 FPU [4], the 1997 G4 FPU [5, 6], the 1998 G5
FPU [7, 8], the 1999 G6 FPU and the 2000 z900 FPU
[9]. Most are remaps of the G5 FPU with extensions
for 64-bit integers. The G4 FPU has an aggressive cy-
cle time and can complete a multiply or add in about 3
cycles with a throughput of 1 per cycle. The G5 FPU
is the first FPU to implement both BFP and HFP ar-
chitectures in hardware on one pipeline. The G5 FPU
design is based on the G4 FPU so it has the same la-
tency for HFP instructions. BFP instructions involve
translating the operands to HFP format, performing
the arithmetic operation including rounding and then
converting back to BFP format. So, BFP operations
take 5 or 6 cycles of latency with a throughput of only
one BFP instruction every two cycles.

The G5 FPU was designed with only one year be-
tween its announcement and that of the G4 FPU. So,
the BFP arithmetic implementation is not optimized
for speed, but instead for simplicity. With a longer
development schedule for the next zSeries FPU, there
were a few new goals: 1) optimize for BFP, 2) opti-
mize for multiply-add, and then 3) optimize for HFP.
The first goal was chosen due to the increase of new
workloads on zSeries, particularly workloads utilizing
Linux. These applications are typically written in Java
or C++ and, especially those written in Java, rely on
BFP even in commercial applications.

Thus, the primary goal was to create a high perfor-
mance implementation much like the pSeries worksta-

tions. One key element of pSeries floating-point units is
that the dataflow supports a fused multiply-add which
effectively yields two operations per cycle. Since this
type of design is optimal for BFP architectures, a deci-
sion was made to base our design on the Power4 design.

The Power4 floating-point unit has a 6 stage binary
multiply-add dataflow. It uses tags in the register file to
identify denormalized data. It has only 2 data formats,
BFP single and double with double format retained in
the register file. The major enhancements of our new
zSeries FPU to the Power4 design are:

1. Two architectures are supported (HFP and BFP)
which results in 6 formats versus only 2 formats
of BFP, and 200 different instructions are imple-
mented directly in hardware.

2. The pipeline is reduced to 5 cycles.

3. Denormalized number handling is supported with-
out tags or prenormalization.

4. The normalizer and LZA are expanded to full
width.

5. Division and square root are implemented with a
quad precision radix-4 SRT algorithm.

These items will be detailed in the remainder of this
paper. First, implementing two architectures in one
dataflow will be discussed. Then, the overall dataflow
will be described along with particular enhancements
including handling of denormalized operands and the
divide implementation.

2. Dual Architectures

The first machine to implement both BFP and HFP
architectures in hardware is the 1998 IBM S/390 G5
processor[7]. A hexadecimal dataflow is used which
requires binary operands to be converted to hexadeci-
mal operands before they are operated on. The HFP
instructions are capable of performing one add or one
multiply per cycle with a latency of about 3 cycles. The
BFP instructions can only be pipelined one instruction
every other cycle and the latency is 5 or 6 cycles due
to the extra conversion cycles and rounding cycle.

The problem with optimizing the dataflow for both
HFP and BFP architectures centers on the choice of an
internal bias. HFP architecture has a bias of the form
2"~1 whereas BFP has a bias of the form (271 — 1).
To choose one of the biases as the internal bias and to
convert to the other format requires shifting the signifi-
cands and adding constants to the exponent. To avoid
a conversion cycle, a separate internal representation

[—— | et

I-Llioating Point Regs 25x64 3RIW
16 Arch Register plus 4 Work Register pl \Wrap R
FETCH_BUS |
11T
E0
[0 e 1
[[rrucrec |l [[rruarec &l [[FPuBrec

?
BOOTH DECODE E1
7D [CsA 30:8 4 STAGES 3:2 COUNTER |
DIVIDE
SQRT | [TzD f ‘

C2REG s “ csastacerec || [Inanres gl

E2
b'—'GN . CSA 8:2 4 STAGES

— | |
[His rRec ol | [[sum rReG

W MAIN ADDER with TRUE/ E3
PRECOUNTING cMPL
] 7 1
[[app out o] [lkze - 1]
LT

NORMALIZE L E4
[[norM ouT]

115”“ CARRY REG 116”

E5

ROTATE ’ ROUND ‘

|
[resur o]

FPU_RESULT

Figure 1. Main Fraction Dataflow of FPU

and bias was chosen for both architectures as shown
by the following:

Xprp, = (=1)%x (14 X;) x2¥—biosn:
biasp; = 2"'—1=32T67

Xprp, = (1% x X; x2Xe-biosn:
biasg; = 2771 = 32768

This results in no conversion cycles and the dataflow is
optimized for both architectures. This requires two dif-
ferent shift amount calculations since the biases differ
and the implied radix points differ, but this is a very
small amount of hardware.

3. Dataflow Overview

Figure 1 shows the fraction dataflow. At the top
of the figure there is the Floating-Point Register file
(FPR) with 16 registers of 64 bits each. There are
also 5 wrap registers to hold data for loads. Loads are
staged through the 5 wrap registers and the dataflow.
Loads can be bypassed from any stage in the pipeline
to a dependent instruction by using the wrap registers.
This eliminates wiring congestion in the FPU dataflow
stack and instead localizes it to the register file. When

a read of an operand occurs, the data can come from
the architected register file, the wrap registers, or a
wrap back path from the dataflow, or from memory.
In one cycle three registers of 64 bits can be read and
one register can be written.

The dataflow is a three operand dataflow, which has
a fused multiply and add data structure. One multi-
plier operand and the addend always come from the
FPRs, while the 2nd operand may come from memory.
In the starting cycle (labeled EQ), the A,B and C reg-
isters are loaded with the correct formatting applied,
such as zeroing the low order bits of a short precision
operand. For binary formats the ’implied one’ bit is
assumed to be always ’1’. If a denormalized number is
detected afterwards, this is corrected in the multiplier
and/or the aligner logic.

In the first execution cycle (E1), the shift amount
for the alignment is calculated (considering potential
denormalized operand cases). Also, the multiplication
is started with Booth encoding and the first 4 stages of
3:2 counters of the Wallace tree. If there is an effective
subtraction, the addend is stored inverted in the C2
register.

In the second execution cycle (E2), the alignment
uses the previous calculated shift amount. In the mul-
tiplier, the next 4 stages of 3:2 counters reduce the tree
to two partial products. These partial products with
the aligned addend go through the last 3:2 counter to
build the ’sum’ and ’carry’ of the multiply and add
result. To balance the paths for the timing, the propa-
gate and generate logic is performed also in this cycle.
The propagate and generate bits are stored in a regis-
ter instead of the sum and carry bits. A potential high
part of the aligner output is stored in the high-sum
register (HIS reg).

In the third execution cycle (E3), the main addi-
tion takes place. There is a "True’ and a ’Complement’
Adder to avoid an extra cycle for recomplementation.
Essentially, both A — B and B — A are calculated and
the result is selected based on the carry output of the
true adder. The number of leading zero bits is calcu-
lated using a zero digit count (ZDC) as described in
[4]. This algorithm performs a zero digit count on 16
bit block basis of SUM and SUM + 1. When the car-
ries are known the result is selected among the digits.
The aligner bits which did not participate in the add
are called the high-sum and they feed an incrementer
in this cycle. At the end of this cycle there is a multi-
plexor which chooses between high-sum and high-sum
plus one and also chooses whether to shift the result
by 60 bits. If the high-sum is non-zero, the high-sum
and upper 56 bits of the adder output are chosen to be
latched. If instead the high-sum is zero, only the bits

of the adder output are latched. Also the leading zero
count is stored in the LZC register.

In the fourth execution cycle (E4), the normalization
is done. The stored leading zero count is used directly
to do the normalization. No correction is necessary,
since the LZC is precise. For hex formats, only the two
low order bits of the leading zero count are not used to
get the normalized hex result. Additionally, the sticky
bits are built according to the format.

In the fifth execution cycle (E5), the rounding and
reformatting is done. For hex operands no rounding is
needed, but the operands will pass this cycle anyway.
Since there is a feedback path from the normalizer to
the A, B, and C registers, this does not cost perfor-
mance.

4. Denormalized Input

The architecture supported is a CISC type architec-
ture and supports both register and memory operands
as input to arithmetic instructions. This makes it very
difficult to tag input operands in a timely manner.
Since data from memory arrive late there is no time to
check whether it is denormalized or normalized. The
check requires examining the exponent to see if it is all
zeros which would require for short and long operands
an 8 way and an 11 way NOR function. Detecting de-
normalized input is instead calculated in the first cycle
of execution.

In an implementation of hexadecimal floating-point
the operands are 56 bits wide which requires 29 par-
tial products for a radix-2 Booth encoding. 7 levels of
3:2 counters can only handle a maximum of 28 partial
products, so 29 must take 8 levels. Additional cor-
rection terms do not add significant delay. Our new
FPU assumes that the BFP operands are normalized
and have an implied one. It corrects the multiplier Y,
prior to creating the most significant partial product.
The Booth decode term is calculated for both an im-
plied one and implied zero and then selected once the
implied bit is determined. This partial product gates
into a delayed partial product in the counter tree. The
multiplicand, X is corrected by subtracting a term /zcl
from the counter tree [10] as shown below (W; are the
booth scans):

n—1

X = :1:0—}-2:3@-*2%
=1
n—1

Y o= yot) yi+2”
j=1
L25t +1

Z Wj * 47]'
j=1

W, € {=2,—1,0,+1,+2}
(25t 1+1
P o= > WixXx4
j=1
n—1
X = 1+Zw¢*2_i
i=1
X = X -5
L2541
P o=) WixX'x47 -Yxag
j=1
lzcl = =Y x7o

The addend can be corrected prior to being aligned
into the counter tree. The only difficulty is in correct-
ing the alignment for a denormalized input operand.
To do this the alignment is calculated for the exponent
difference, D, and D+1, and D —1, and is selected late
based on which operands are denormalized. Thus, de-
normalized input can be handled without stalling the
pipeline or trapping to software. There is one rare case
that does trap to software which will be discussed in
the next section.

5. Alignment Limitations

The dataflow width is limited to an addend of 56 bits
plus 4 guard bits and a product field which is aligned
with the adder of 112 bits and 4 guard bits for a to-
tal of 176 bit wide dataflow. There are certain cases
of unnormalized and denormalized numbers which are
difficult to handle in this dataflow. To understand the
cases better a case by case study is shown detailing
whether a case can be handled by the hardware di-
rectly or whether some type of intervention is needed.

In regards to the alignment of the addend with the
product, the radix point of the product is fixed in the
dataflow. The radix point of the addend is right shifted
to achieve the proper fraction alignment prior to the
addition of the two.

The BFP arithmetic on this dataflow has to con-
sider the larger dataflow width required by HFP. The
dataflow is partitioned as follows for BFP data:

|Addend field | Product field |

[<---- 60 bits-—->|<-- 116 bits ——--—————- >|
[1.cccc...cGGGGGGG|xx.pppp. PGGGGGGGGGG|
| Radixil | Radix2

There are two possible radix points, Radixl and
Radix2, which are used as reference points for the pos-
sible right shifts that may be required. Radix1 is the
radix point for the addend data. Radix2 is the radix

point for the product data. The G bits represent extra,
guard bits for addend and product fields.

Case 1: Normalized Addend and Normalized
Product: This is the most straight forward case. To
calculate the right shift amount S A the following equa-
tions are used to achieve the correct result S (D is the
exponent difference):

S = [(L.faz2PA~PBies)g(1. fpa2Pr=Pies)) 4
(1.fc.’L'2Ec_Bia8)
S = (1.fazl.fg)z2Ba+Ee—Bias)-Bias |
(LfoQEc—Bias)
D = (Es+ Ep— Bias)— E¢
SA = Es+Ep—Ec+K,
where Constant K = 59 + 2 — Bias

If the calculation of the shift amount yields a nega-
tive result then the addend C, is not shifted at all and
any carry out of the adder is not allowed to propagate
since the guard bits, G, are zero. A shift amount which
is greater than 54 + 106 = 160 will result in the sticky
calculation being an effective OR of the addend C. The
information will be used later in the Rounder.

Case 2: Normalized Addend and Denormal-
ized Product: This case doesn’t pose any extra dif-
ficulty. If A and/or B are denormalized then there
is the possibility that the product may be denormal-
ized. Aslong as C is normalized, then there are enough
bits of precision maintained to form a result consistent
with the BFP Architecture since the exponent of the
denormalized product will be less than the normalized
addend.

Case 3a: Denormalized Addend and Normal-
ized Product: In this case, C' is denormalized and P
is normalized. The exponent of the resulting sum will
be equal to that of the product, P, and the dataflow is
sufficient.

Case 3b: Denormalized Addend, Denormal-
ized Product and Underflow Trap Disabled: In
this case, C' is denormalized and P is denormalized.
Since the Underflow Trap is disabled, the result will
be rounded to a denormalized number or zero in ac-
cordance with the rounding mode and the value of the
two guard bits.

Case 3c: Denormalized Addend, Denormal-
ized Product and Underflow Trap Enabled:
Since the Underflow Trap is enabled, the result will
need to be normalized assuming an unbounded expo-
nent range. This will require at least 53 bits of pre-
cision. However, it is possible for the values of the
addend and product fields to be disjoint since we don’t
right shift the product field with respect to the ad-
dend field. If both the addend and the product are

denormalized, then the result is denormalized and the
value of Radixl will be will be 271022, If the value
of Radix2 is less than 271022-60-2 — 9-1084 "thep the
dataflow is disjoint and is not sufficient. This case is
implemented in low level software called millicode. A
pseudo-exception is taken by hardware and the milli-
code handler executes a series of instructions to cal-
culate the correct result. Since we have an underflow
condition and the underflow trap is enabled, this case
will end in an architectural exception anyhow and so
there is no real performance degradation. This is the
only case implemented in millicode.

6. Divide

There is an extra wide, 116 bit divider dataflow, in
which the mantissa of the quotient and the remainder
is calculated using an SRT algorithm. There are nu-
merous different divide instructions and formats to be
supported. Not only does the divider support the 6
floating-point formats, but it also performs integer di-
vides on operands 32, 64, or 128 bits wide, which may
be signed or unsigned.

6.1. SRT-Algorithm

SRT is a frequently used method for implementing
divide and square root on modern microprocessors. It
is named after Sweeney, Robertson and Tocher, who
independently proposed the algorithm [13, 14]. SRT is
an iterative algorithm that retires one digit of the quo-
tient in every iteration. After each iteration, the new
partial remainder is calculated by multiplying the pre-
vious partial remainder with the radix of the algorithm
and subtracting a multiple of the divisor.

This operation is formally described as follows:

P@'+1 = rxP — qi4+1 * D

where P represents the partial remainder, ¢ represents
the quotient digit guess, D the divisor, and r the radix
of the algorithm. The final quotient is the weighted
sum of all quotient digits.

The value for the actual quotient digit g;41 is esti-
mated and therefore the partial remainder P, could
be negative. This can be compensated for by allowing
negative values for ¢;+1 too. So, errors in the actual
partial remainder can be corrected in later iterations.
The convergence of the algorithm requires the following
condition be met:

|Pi+1| < (qmaw*D)/(r_l)

The visual representation of the above equation can
be shown in a so called P-D plot. The ranges of g;4+1
can be seen in Figure 3.

PARTIAL REMAINDER

(DIVIDEND)
DIVISOR
|:| cee |:| |:|28
| 115| | 113
5 4 2
TAB
[
(-3,-2,-1,0, i i
+1, +2, +3)
* -2 * -1
]
l ¢ QUOTIENT
SUBTRACTOR
QPOS 116
CPA 6 CSA 110
ONEG 116

Figure 2. Dataflow structure of divider

Our implementation uses a radix-4 algorithm with
a maximally redundant digit set [11, 12]. This re-
duces the cost of the quotient estimate table lookup
at the expense of an increase to the range of quo-
tient digits. Since a full width carry-propagate adder
(CPA) would not fit into the required cycle time,
a redundant form of the partial remainder is used
which allows carry-save adders (CSA) to be used.
The increased range of quotient digits has very lit-
tle effect on a carry-save implementation. The im-
plemented equations are shown by the following:

PSi+1 +PC1'+1 = 4(Ps; + Pe;) — qit1* D
Qi+1 € {-3,-2,—-1,0,+1,+2,+3}
qi+1 = Qi+1,1 + 2¢;i12,2
Ps;\, + Pey g = 4(Ps; + Pe;) — qiv1,1 1D — giy1,2 % 2D

where Ps and P, are the partial remainder in a sum
and carry redundant form, and g;41,1 and g;y1,2 are
the quotient digit guesses separated into a guess of 1
and a guess of 2 where each can take on the values -1,
0, or +1.

6.2. Structure of Divider Dataflow

Figure 2 shows the 6 main elements of the divide
macro, which contains the divide dataflow:

Divisor Register:
This is a simple register with the maximum width of
113 bits for a BFP quad precision, and is where the
divisor is stored for the subtractions.

Table Lookup:
This table consists of a relatively small part of combi-
natorical logic. It needs the five most significant bits
of the partial remainder and the two most significant
bits of the divisor, after the implied one. Figure 3 is a

4P,
0111.1 dc dc dc +3 T

0111.0 dc dc dc +3

0110.1 dc dc +3 +3 q,,=*3
0110.0 dc dc +3 +3

0101.1 dc +3 +3] | T

0101.0 dc +3 +3 L. "“+3

0100.1 +3 3 [.¥d +3 04 =+2

1010.1 dc 3 -3 " .. =3
1010.0 de -3 -3 it BN 3
1001.1 dc dc 3 -3
1001.0 dc dc -3 -3 js1=3
1000.1 dc dc dc 3
1000.0 dc dc dc -3 ¥
[1.00 1.01 1.10 .11

Figure 3. Divide Table

combination of a P-D plot and the actual implemented
lookup table. It illustrates the shifted partial remain-
der ranges in which a quotient digit can be selected
without violating the bounds on the next partial re-
mainder. It can be seen that the table is asymmetric
concerning +/-. This is due to the fact that the par-
tial remainder has a redundant form which causes an
additional error. Because of this, the high order bits of
the partial remainder can be to small (by one ulp), but
never be to large. A symmetrical lookup would also be
possible, but then we would need one more bit of the
partial remainder or the divisor.
Divisor Multiple Generation:

Before selecting the multiples of one or two, the divi-
sor is inverted depending on the sign bit of the partial

remainder. When the partial remainder is negative, we
have to add divisor multiples and when it is positive
we have to subtract. The g;1,1 term represents divisor
multiples of one and and the g; 1,2 represents divisor
multiples of two. These terms are added together with
the partial remainder.

Partial Remainder Register and Subtractor:
The partial remainder register width of 116 bit is de-
fined by the HFP quadword format width (112) plus
one hex guard digit. The register consists of a sum part
of 116 bits and a carry part of 28 bits. The 6 high or-
der sum bits must be explicit without a corresponding
carry because they are used in the table lookup. The
most significant carry bit starts at position 6 and only
every fourth carry bit is stored. This is possible since
the subtractor does not use a full 4:2 reduction, but
uses one stage of 3:2 reduction (CSAs) and one stage
of CPAs with a width of 4 bits. On the high order
side, one CPA with 6 bit width is needed to deliver an
explicit value to the table. These 4 bit wide CPAs in
the low order range save latches, area and power and
do not cost cycle time, since the 6 bit CPA is needed
anyhow in the high order range.

Quotient Register:
The quotient register has a width of 116 bits and con-
sists of two parts: the Qpos and the Q) yrg registers.
When g; 11 is positive, it is stored in Q) pos, and when
gi+1 is negative, it is stored in Qngg. The pointer,
which defines which digit of @) is written, is controlled
by a counter in the control logic.

6.3. Execution and performance of floating-
point divides

After the operands have been loaded into the div-
idend and divisor registers, the divide iterations can
start. When an operand is denormalized, a normaliza-
tion in the main dataflow is needed in advance. The
required number of divide iterations depends on the
data format (single, double, quad). After the divider
has completed enough iterations, the sum and carry
parts of the remainder and the quotient are moved out
into the main dataflow before the main adder. There,
they are added to get the explicit value of remainder
and quotient. Afterwards the quotient is normalized
and rounded, using the main dataflow of the floating-
point unit.

The following table shows the required cycles for
execution of IEEE floating-point divide instructions:

Action \ format single | double | quad
Load Operands 3 3 15
Divide Loops 14 28 58
Readout Remainder/Quotient | 4 4 4
Calculate Quotient 1 1 1
Normalize 1 1 1
Round 1 1 1
Write back 1 1 2
Total Latency 25 39 82
Pipelined Latency 30 34 77

6.4. Execution and performance for integer
divides

The integer operands are made positive and normal-
ized in the main dataflow. Afterwards the operands
are loaded into the dividend and divisor registers, as
for floating-point operands. The difference in handling
is the pointer, to which g; within the quotient registers
is written.

The number of effective bits ng in the quotient can
be calculated in advance, when the effective bits ny
and np of the dividend and the divisor are known.
These values are gained during the normalization pro-
cess. For a 64 bit integer division the following equa-
tions are valid:

fo/r Vnorm < Dnorm
folr Vnorm > DTLO’I"D’L

nQgo = Ny —Np
ngt = ny-—-np+1

Since we gain two bits per cycle, the number of effective
quotient bits ngg to be calculated is rounded up to the
next even number. The start pointer Psiq¢ and the
stop pointer Ps;,, for a 64 bit integer divide are given
by:

Psiory = 64— NQE; PStop =64

The following table shows the required cycles for
execution of IEEE floating-point divide instructions:

Action cycles
Load and concatenate 4
Normalize 5
Divide Loops 1-32
Readout Remainder/Quotient | 5
Invert Sign (potential) 5
Write back 5
Total Latency 30 - 61
Pipelined Latency 25 - 56

For integer divides the number of divide iterations
depend purely on the effective number of quotient bits.
Additionally, there are some base cycles which have

a dependency on the operand width too. In classical
benchmarks, it often occurs that, the divide result has
a small number of effective bits; this improves the per-
formance of integer divides considerably.

7. Physical Implementation

The fraction dataflow has been implemented in a bit
stack approach. The AB and C registers have a width
of 56 bits. This is widened during alignment and multi-
plication. The adder, normalizer, and rounder are 116
bits wide. The output of the rounder is reformatted
to a width of 64 (with exponent). The layout has a
folded form. On the top of Figure 4 are the architec-
tural floating-point registers with A, B, and C registers
below. On the bottom is the normalizer. The exponent
dataflow is in a stack on the right of the A, B, and C
fraction registers.

The divider is also implemented in a stack approach,
whereby the divide-table is combinatorial logic which
occupies a very small area on the left hand side of the
divider macro. Since the interconnection of the divide
engine to the main fraction dataflow is not timing crit-
ical, this can be located away from the main dataflow
and is shown in the right upper corner of the layout.
The fraction dataflow is on the left hand side. On the
right are the synthesized control logic macros. For each
execution pipeline there is one separate control macro.
The macros on the bottom contain some miscellaneous
logic, which is not related to the floating-point func-
tion.

The divider macro is completely designed in stan-
dard inverting CMOS logic. Although it has been im-
plemented as a full custom macro, extensive use of a
standard cell library has been made in order to keep
layout effort small. As a power saving feature, most
parts of the floating-point unit can be turned off com-
pletely when not in use. For enhanced testability, each
of the master-slave latches is accompanied by an addi-
tional scan latch. Adding this extra scan latch to the
scan chain configuration results in an increased tran-
sition fault coverage. The floating-point unit occupies
an area of 3.76 mm?2. The divider macro occupies 0.22
mm?, which is about 6 % of the FPU. It has been fabri-
cated in IBM’s 0.13 micron CMOS SOI technology. At
a supply voltage of 1.15V and a temperature of 50° C
it supports a clock frequency significantly greater than
1 GHz.

8. Summary

A new zSeries floating-point unit has been shown
which, for the first time, is based on a fused multiply-

Figure 4. Layout of Floating-Point-Unit

add dataflow capable of supporting two architectures.
Both binary and hexadecimal floating-point instruc-
tions are supported for a total of 6 formats. The
floating-point unit is capable of performing a multiply-
add instruction for hexadecimal or binary every cycle
with a latency of 5 cycles. This has been accomplished
by a unique method of representing the two architec-
tures with two internal formats with their own biases.
This has eliminated format conversion cycles and has
optimized the width of the dataflow. Though, this
method creates complications in the alignment of the
addend and product which have been shown in detail.
Denormalized numbers are almost exclusively handled
in hardware except for one case which is destined for
an underflow exception handler anyway.

Also, a fast divide algorithm is used which is capa-
ble of supporting a quad precision width and achieves
2 result bits per cycle. The number of divide iterations
depends on the effective number of quotient bits, which
improves the performance significantly. For the re-
dundant expression of the partial remainder only each
fourth carry bit is used, which saves around 80 latches

compared to a conventional carry-save approach.

The new zSeries floating-point unit is optimized for
both hexadecimal and binary floating-point architec-
ture. It is versatile supporting 6 formats, and it is fast
supporting a multiply-add per cycle.

References

[1] “IEEE standard for binary floating-point arithmetic,
ANSI/IEEE Std 754-1985,” The Institute of Electrical
and Electronic Engineers, Inc., New York, Aug. 1985.

[2] “Enterprise Systems Architecture/390 Principles of
Operation,” Order No. SA22-7201-7, available through
IBM branch offices, July 2001.

[3] “z/Architecture Principles of Operation,” Order No.
SA22-7832-1, available through IBM branch offices,
Oct. 2001. available through IBM, Oct. 2001.

[4] G. Gerwig and M. Kroener. “Floating-Point-Unit in
standard cell design with 116 bit wide dataflow,” In
Proc. of Fourteenth Symp. on Comput. Arith., pages
266-273, Adelaide, Austraila, April 1999.

[6] E. M. Schwarz, L. Sigal, and T. McPherson. “CMOS
floating point unit for the S/390 parallel enterpise
server G4,” IBM Journal of Research and Develop-
ment, 41(4/5):475-488, July/Sept. 1997.

[6] E. M. Schwarz, B. Averill, and L. Sigal. “A radix-8
CMOS S/390 multiplier,” In in Proc. of Thirteenth
Symp. on Comput. Arith., pages 2-9, Asilomar, CA,
July 1997.

[7] E. M. Schwarz and C. A. Krygowski. “The S/390 G5
floating-point unit,” IBM Journal of Research and De-
velopment, 43(5/6):707-722, Sept./Nov. 1999.

[8] E. Schwarz, R. Smith, and C. Krygowski. “The S/390
G5 floating point unit supporting hex and binary ar-
chitectures,” In Proc. of Fourteenth Symp. on Comput.
Arith., pages 258-265, Adelaide, Austraila, April 1999.

[9] E. M. Schwarz, M. A. Check, C. Shum, T. Koehler,
S. Swaney, J. MacDougall, and C. A. Krygowski.
“The microarchitecture of the IBM eServer z900 pro-
cessor,” IBM Journal of Research and Development,
46(4/5):381-396, July/Sept. 2002.

[10] C. A. Krygowski and E. M. Schwarz. “Floating-point
multiplier for de-normalized inputs,” U.S. Patent Ap-
plication No. 2002/0124037 A1, page 8, Sep. 5, 2002.

[11] M. D. Ercegovac and T. Lang. “Division and Square
Root: digit-recurrence algorithms and implementa-
tions,” Kluwer, Boston, 1994.

[12] D. I. Harris, S. F. Obermann, and M. A. Horowitz.
“SRT Division Architectures and Implementations,” In
Proc. of Thirteenth Symp. on Comput. Arith., pages
18-25, Asilomar, California, July 1997.

[13] K. D. Tocher. ”Techniques of multiplication and di-
vision for automatic binary computers,” Quarterly J.
Mech. Appl. Math., vol.11, pt.3, pp.364-384, 1958.

[14] J. E. Robertson ” A new class of digital division meth-
ods,” IRE Transactions on Electronic Computers, vol.
EC-7, pp.218-222, Sept. 1958.

