
52 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 53 more queue: www.acmqueue.com

Stream
Processors

Programmability with Effi ciency

M
any signal processing applications require
both effi ciency and programmability. Base-
band signal processing in 3G cellular base
stations, for example, requires hundreds of
GOPS (giga, or billions, of operations per

second) with a power budget of a few watts, an effi ciency
of about 100 GOPS/W (GOPS per watt), or 10 pJ/op
(picoJoules per operation). At the same time programma-
bility is needed to follow evolving standards, to support
multiple air interfaces, and to dynamically provision
processing resources over different air interfaces. Digital
television, surveillance video processing, automated opti-
cal inspection, and mobile cameras, camcorders, and 3G
cellular handsets have similar needs.

Conventional signal processing solutions can provide
high effi ciency or programmability, but are unable to pro-
vide both at the same time. In applications that demand
effi ciency, a hardwired application-specifi c processor—
ASIC (application-specifi c integrated circuit) or ASSP
(application-specifi c standard part)—has an effi ciency
of 50 to 500 GOPS/W, but offers little if any fl exibility.
At the other extreme, microprocessors and DSPs (digital

WILLIAM J. DALLY, UJVAL J. KAPASI,
BRUCEK KHAILANY, JUNG HO AHN, AND

ABHISHEK DAS, STANFORD UNIVERSITY

DSPsFO
CU

S

52 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 53 more queue: www.acmqueue.com

Stream
Programmability with Effi ciency

Will this new kid on the block
muscle out ASIC and DSP?

54 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 55 more queue: www.acmqueue.com

signal processors) are completely programmable but have
effi ciencies of less than 10 GOPS/W. DSP (digital signal
processor) arrays and FPGAs (fi eld-programmable gate
arrays) offer higher performance than individual DSPs,
but have roughly the same effi ciency. Moreover, these
solutions are diffi cult to program—requiring paralleliza-
tion, partitioning, and, for FPGAs, hardware design.

Applications today must choose between effi ciency
and programmability. Where power budgets are tight,
effi ciency is the choice, and the signal processing is
implemented with an ASIC or ASSP, giving up program-
mability. With wireless communications systems, for
example, this means that only a single air interface can be
supported or that a separate ASIC is needed for each air
interface, with a static partitioning of resources (ASICs)
between interfaces.

Stream processors are signal and image processors that
offer both effi ciency and programmability. Stream proces-
sors have effi ciency comparable to ASICs (200 GOPS/W),
while being programmable in a high-level language.

EXPOSING PARALLELISM AND LOCALITY
A stream program (some-
times called a synchro-
nous data-fl ow program)
expresses a computation
as a signal fl ow graph with
streams of records (the
edges) fl owing between
computation kernels (the
nodes). Most signal-pro-
cessing applications are
naturally expressed in this
style. For example, fi gure
1 shows a stream program
that performs stereo depth
extraction based on the
algorithm of Kanade.1 In
this application, a stereo
pair of images are fi rst
fi ltered and then compared

with each other to extract the depth at each pixel of the
image. Along the top path, a stream of pixels from the left
image is fi ltered by a Gaussian kernel to reject high-fre-
quency noise, generating a stream of smoothed pixels.
This stream is fi ltered by a Laplacian kernel to highlight
edges, generating a stream of edge-enhanced pixels. The
right image follows a similar fi ltering path. The SAD
(sum of absolute differences) kernel then compares a 7x7
sub-image about each pixel in the fi ltered left image with
a row of 7x7 sub-images in the fi ltered right image to
fi nd the best match. The position of the best match gives
the disparity between the two images at that pixel, from
which we can derive the depth of the pixel.

The stream program of fi gure 1 exposes both parallel-
ism and locality. Each element of each input stream (all of
the image pixels) can be processed simultaneously, expos-
ing large amounts of data parallelism. This parallelism is
particularly easy to identify in a stream program because
the structure of the program makes the dependencies
between kernels explicit. The complex disambiguation
required when intermediate data is passed through mem-
ory arrays is not needed. Within each kernel, instruc-
tion-level parallelism is exposed since many independent
operations can execute in parallel. Finally, the kernels
can operate in parallel, operating on pixels or frames in a
pipelined manner to expose thread-level parallelism.

The stream program also exposes two types of local-
ity: kernel and producer-consumer. During the execution of
a kernel, all references are to variables local to the kernel
except for values read from the input stream(s) and writ-
ten to the output stream(s). This is kernel locality. Consider

Stream
Processors

Programmability with Effi ciency

DSPsFO
CU

S

image 0 Gaussian

SADD depth map

filtered
image 0

image 11 Gaussiann

Laplacian

Laplacian filtered
image 1

FIG 1FIG 1FIG 1

54 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 55 more queue: www.acmqueue.com

one implementation of the 7x7 convolution kernel.
The inputs and outputs for the operations in the kernel
require 176 references to values in local register fi les for
every word accessed from the SRF (stream register fi le).
Thus, because of kernel locality, we are able to ensure that
one out of every 177 references is local to the kernel.

Producer-consumer locality is exposed by the streams
fl owing between kernels. As one kernel produces stream
elements, the next kernel consumes these elements in
sequence. By appropriately sequencing kernels, the ele-
ments of an intermediate stream can be kept local—val-
ues are consumed soon after they are produced. Each
time the Gaussian kernel in fi gure 1 generates a block of
the smoothed pixel stream, for example, this block can
be consumed by the Laplacian kernel. Only a block of the
intermediate stream exists at any point in time, and this
block can be kept in local storage.

EXPLOITING PARALLELISM AND LOCALITY
As shown in the block diagram of fi gure 2, a stream
processor consists of a scalar processor, a stream memory
system, an I/O system, and a stream execution unit,
which consists of a microcontroller and an array of C
arithmetic clusters. Each cluster contains a portion of the
SRF, a collection of A arith-
metic units, a set of local
register fi les, and a local
switch. A local register fi le
is associated with each
arithmetic unit. A global
switch allows the clusters
to exchange data.

A stream processor
executes an instruction
set extended with kernel
execution and stream
load and store instruc-
tions. The scalar processor
fetches all instructions. It
executes scalar instructions
itself, dispatches kernel
execution instructions to
the microcontroller and
arithmetic clusters, and
dispatches stream load and
store instructions to the
memory or I/O system.
For each kernel execution
instruction, the microcon-
troller starts execution of a

microprogram broadcasting VLIW (very-long instruction
word) instructions across the clusters until the kernel is
completed for all records in the current block.

A large number, C×A, of arithmetic units in a stream
processor exploit the parallelism of a stream program. A
stream processor exploits data parallelism by operating
on C stream elements in parallel, one on each cluster,
under SIMD (single-instruction, multiple-data) control of
the microcontroller. The instruction-level parallelism of
a kernel is exploited by the multiple arithmetic units in
each cluster that are controlled by the VLIW instructions
issued by the microcontroller. If needed, thread-level
parallelism can be exploited by operating multiple stream
execution units in parallel. Research has shown that
typical stream programs have suffi cient data and instruc-
tion-level parallelism for media applications to keep more
than 1,000 arithmetic units productively employed.2

The exposed register hierarchy of the stream processor
exploits the locality of a stream program. Kernel local-
ity is exploited by keeping almost all kernel variables in
local register fi les immediately adjacent to the arithmetic
units in which they are to be used. These local register
fi les provide very high bandwidth and very low power
for accessing local variables. Producer-consumer local-

scalar
processor

DRAM
bank

DRAM
bank

SRF
lane

CL
SW

LRF

LRF

SRF
lane

CL
SW

LRF

LRF

m
em

or
y

 c
on

tr
ol

le
r

an
d

I/
O

 s
ys

te
m

microcontroller

FI
G

 2
FI

G
 2

56 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 57 more queue: www.acmqueue.com

ity is exploited via the SRF. A producing kernel, such as
the Gaussian kernel in fi gure 1, generates a block of an
intermediate stream into the SRF, each cluster writing to
its local portion of the SRF. A consuming kernel, such as
the Laplacian kernel in fi gure 1, then consumes the block
of stream elements directly from the SRF.

To see how parallelism and locality are exploited in
practice, fi gure 3 shows how the depth extraction pro-
gram of fi gure 1 is mapped to the stream processor of fi g-
ure 2. The input images are read from external memory or
an I/O device into the SRF one block at a time, then the
Gaussian kernel is run. Each cluster performs the kernel
on a different pixel of the input, reading each pixel of the

block from the SRF and writing each pixel of the output
block to the SRF. Most local variables for the kernels are
kept in the local register fi les with some partial products
cycled through the SRF. Overall, for each word accessed
from memory or I/O, 23 words are referenced from the
SRF, and 317 are referenced from local registers.

This high fraction of references from local registers is
not unique to the depth extractor. Figure 4 shows that
kernel locality and producer-consumer locality exist in a
broad range of applications and that a stream processor
can successfully exploit this locality. The fi gure shows the
bandwidth from main memory, the SRF, and local register
fi les for six applications. The fi rst column (depth) shows
the bandwidth for the depth extractor of fi gure 1. MPEG
is an MPEG2 encoder including motion estimation. QRD
is a QR decomposition using the Householder method.
STAP (space-time adaptive processing) is an adaptive
beam-forming application. Render is an OpenGL 3D
graphics-rendering program. RTSL (realtime shading lan-
guage) is a renderer with a programmable shader.3 For all
of these programs, more than 95 percent of all references
are from the local registers and less than 0.5 percent are

from external memory.
While a conventional

microprocessor or DSP can
benefi t from the locality
and parallelism exposed
by a stream program, it is
unable to fully realize the
parallelism and locality of
streaming. A conventional
processor has only a few
(typically fewer than four,
compared with hundreds
for a stream processor)
arithmetic units and thus
is unable to exploit much
of the parallelism exposed
by a stream program. A
conventional processor
is unable to realize much
kernel locality because
it has too few processor
registers (typically fewer
than 32, compared with
thousands for a stream
processor) to capture the
working set of a kernel. A
processor’s cache memory
is unable to exploit much

Stream
Processors

Programmability with Effi ciency

DSPsFO
CU

S

row of pixels

previous partial sums

new partial sums

blurred row

previous partial sums

new partial sums

sharpened row

filtered row segment

filtered row segment

previous partial sums

new partial sums

depth map row segment

convolution
(Gaussian)

convolution
(Laplacian)

SAD

FIG 3FIG 3

56 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 57 more queue: www.acmqueue.com

of the producer-consumer locality because there is
little reuse of consumed data (the data is read once and
discarded). Also, a cache is reactive, waiting for the data
to be requested before fetching it. In contrast, data is pro-
actively fetched into an SRF so it is ready when needed.
Finally, a cache replaces data without regard to its live-
ness (using a least-recently used or random replacement
strategy) and often discards data that is still needed. In
contrast, an SRF is managed by a compiler in such a man-
ner that only dead data (data that is no longer of interest)
is replaced to make room for new data.

EFFICIENCY
Most of the energy consumed by a modern microproces-
sor or DSP is consumed by data and instruction move-
ment, not by performing arithmetic. As illustrated in

Table 1, for a 0.13µm (micrometer) process operating
from a 1.2V supply, a simple 32-bit RISC processor con-
sumes 500 pJ to perform an instruction,4 whereas a single
32-bit arithmetic operation requires only 5 pJ. Only 1
percent of the energy consumed by the instruction is used
to perform arithmetic. The remaining 99 percent goes to
overhead. This overhead is divided between instruction
overhead (reading the instruction from a cache, updating
the program counter, instruction decode, transmitting the
instruction through a series of pipeline registers, etc.) and
data overhead (reading data from a cache, reading and
writing a multiport register fi le, transmitting operands
and intermediate results through pipeline registers and
bypass multiplexers, etc.).

A stream processor exploits data and instruction
locality to reduce this overhead so that approximately 30
percent of the energy is consumed by arithmetic opera-
tions. On the data side, the locality shown in fi gure 4
keeps most data movements over short wires, consuming
little energy. The distributed register organization with a
number of small local register fi les connected by a cluster
switch is signifi cantly more effi cient than a single global
register fi le.5 Also, the SRF is accessed only once every 20
operations on average, compared with a data cache that is
accessed once every three operations on average, greatly
reducing memory access energy. On the instruction side,
the energy required to read a microinstruction from the
microcode memory is amortized across the data parallel

clusters of a stream proces-
sor. Also, kernel microin-
structions are simpler and
hence have less control
overhead than the RISC
instructions executed by
the scalar processor.

TIME VERSUS SPACE
MULTIPLEXING
A stream processor time-
multiplexes its hardware
over the kernels of an
application. All of the clus-
ters work together on one
kernel—each operating on
different data—then they
all proceed to the next
kernel, and so on. This is
shown on the left side of
fi gure 5. In contrast, many
tiled architectures (DSP

Operation Energy

32-bit arithmetic operation 5 pJ

32-bit register read 10 pJ

32-bit 8KB RAM read 50 pJ

32-bit traverse 10mm wire 100 pJ

Execute instruction 500 pJEn
erg

y P
er O

per
atio

n (
0.1

3µ
m,

1.2V
)TABLE 1

FIG 4FIG 4

58 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 59 more queue: www.acmqueue.com

arrays) are space-multiplexed. Each kernel runs continu-
ously on a different tile, processing the data stream in
sequence, as shown on the right side of fi gure 5. The
clusters of a stream processor exploit data parallelism,
whereas the tiles of a DSP array exploit thread-level
parallelism.

Time multiplexing has two signifi cant advantages
over space multiplexing: load balance and instruction
effi ciency. As shown in fi gure 5, with time multiplexing
the load is perfectly balanced across the clusters—all of
the clusters are busy all of the time. With space multi-
plexing, on the other hand, the tiles that perform shorter
kernels are idle much of the time as they wait for the
tile running the longest kernel to fi nish. The load is not
balanced across the tiles: Tile 0 (the bottleneck tile) is
busy all of the time, while the other tiles are idle much of
the time. Particularly when kernel execution time is data
dependent (as with many compression algorithms), load
balancing a space-multiplexed architecture is impossible.
A time-multiplexed architecture, on the other hand, is

always perfectly balanced. This often results in a 2x to 3x
improvement in effi ciency.

Exploiting data parallelism rather than thread-level
parallelism, a time-multiplexed architecture uses its
instruction bandwidth more effi ciently. Fetching an
instruction is costly in terms of energy. The instruction
pointer is incremented, an instruction cache is accessed,
and the instruction must be decoded. The energy required
to perform these operations often exceeds the energy per-
formed by the arithmetic carried out by the instruction.
On a space-multiplexed architecture, each instruction is
used exactly once, and thus this instruction cost is added
directly to the cost of each instruction. On a time-mul-
tiplexed architecture, however, the energy cost of an
instruction is amortized across the parallel clusters that all
execute the same instruction in parallel. This results in an
additional 2x to 3x improvement in effi ciency.

STREAM PROGRAMMING TOOLS
Mapping an application to a stream processor involves
two steps: kernel scheduling, in which the operations of
each kernel are scheduled on the arithmetic units of a
cluster; and stream scheduling, in which kernel executions
and data transfers are scheduled to use the SRF effi ciently
and to maximize data locality. We have developed a set of
programming tools that automate both of these tasks so
that a stream processor can be programmed entirely in C
without sacrifi cing effi ciency.

Our kernel scheduler takes a kernel described in
kernel C and compiles it to a VLIW microprogram. This
compilation uses communication scheduling6 to map each
operation to a cycle number and arithmetic unit, and
simultaneously schedule data movement necessary to
provide operands. The compiler software pipelines inner
loops, converting data parallelism to instruction-level
parallelism where it is required to keep all operation units
busy. To handle conditional (if-then-else) structures across
the SIMD clusters, the compiler uses predication and
conditional streams.7 Figure 6 shows the schedule for the
7x7 convolution kernel from the depth extractor of fi gure
2 compiled to the Imagine stream processor (described
later). Time is shown on the vertical axis and function
units on the horizontal axis. The kernel scheduler is able
to keep the multipliers (columns 4 and 5) busy nearly
every cycle.

The stream scheduler schedules not only the transfers
of blocks of streams between memory, I/O devices, and
the SRF, but also the execution of kernels. This task is
comparable to scheduling DMA (direct memory access)
transfers between off-chip memory and I/O that must be

Stream
Processors

Programmability with Effi ciency

DSPsFO
CU

S

K1 K1 K1 K1

K2 K2 K2

K3 K3 K3 K3

K4 K4 K4 K4

K1

K1

K1

K1

K2

K2

K2

K2

K3

K3

K3

K3

K4

K4

K4

K4FIG 5FIG 5

58 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 59 more queue: www.acmqueue.com

performed manually for most conventional DSPs. The
stream scheduler accepts a C++ program and outputs
machine code for the scalar processor including stream
load and store, I/O, and kernel execution instructions.
The stream scheduler optimizes the block size so that the
largest possible streams are transferred and operated on at
a time, without overfl owing the capacity of the SRF. This
optimization is similar to the use of cache blocking on
conventional processors and to stripmining of loops on
vector processors. Figure 7 shows a stream schedule for an
OpenGL polygon renderer. Time is shown vertically and
space in the SRF horizontally.

THE IMAGINE STREAM PROCESSOR
Imagine,8 shown in fi gure 8, is a prototype stream pro-
cessor fabricated in a 0.18µm CMOS process. Imagine
contains eight arithmetic clusters, each with six 32-bit
fl oating-point arithmetic units: three adders, two multi-
pliers, and one divide-square root (DSQ) unit. With the
exception of the DSQ unit, all units are fully pipelined
and support 8-, 16-, and 32-bit integer operations, as
well as 32-bit fl oating-point operations. Each input of
each arithmetic unit has a separate local register fi le of
sixteen or thirty-two 32-bit words. The SRF has a capac-
ity of 32KB 32-bit words (128KB) and can read 16 words
per cycle (two words per cluster). The clusters are con-
trolled by a 576-bit microinstruction. The microcontrol
store holds 2K such instructions. The memory system
interfaces to four 32-bit-wide SDRAM banks and reorders
memory references to optimize bandwidth. Imagine also
includes a network interface and router for connection to
I/O devices and to combine multiple Imagines for larger
signal-processing tasks.

CHALLENGES
Stream processors depend on parallelism and locality
for their effi ciency. For an application to stream well,
there must be suffi cient parallel work to keep all of the
arithmetic units in all of the clusters busy. The parallel-
ism need not be regular, and the work performed on each
stream element need not be of the same type or even the
same amount. If there is not enough work to go around,
however, many of the stream processor’s resources will
idle and effi ciency will suffer. For this reason, stream pro-
cessors cannot effi ciently handle some control-intensive
applications that are dominated by a single sequential
thread of control with little data parallelism. A streaming
application must also have suffi cient kernel and producer-
consumer locality to keep global bandwidth from becom-
ing a bottleneck. A program that makes random memory

references and does little work with each result fetched,
for example, would be limited by global bandwidth and
not benefi t from streaming. Happily, most signal pro-
cessing applications have adequate data parallelism and
locality.

Even for those applications that do stream well, inertia
represents a signifi cant barrier to the adoption of stream
processors. Though it is easy to program a stream proces-

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INP0 INP1 INP2 INP3 OUT0 OUT1 SP_0 SP_0 COM0 MC_0 JUK0 VAL0

G E N C I S T A T E

C O N D _ I N _ D

G E N _ C C E N D

S P C R E A D _ W T S P C W R I T E

C O M M U C D A T A

C H K _ A N Y

S E L E C T

S H I F T A 1 6

C O M M U C P E R M

C O M M U C P E R M

C O M M U C P E R M

S E L E C T

S E L E C T C O M M U C P E R M

I M U L R N D 1 6 S E L E C T

I M U L R N D 1 6

I M U L R N D 1 6I M U L R N D 1 6 N S E L E C T

I M U L R N D 1 6I M U L R N D 1 6

I M U L R N D 1 6I M U L R N D 1 6 P A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S S

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 N S E L E C T

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 S E L E C T P A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S SI A D D S 1 6 N S E L E C TP A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S SI A D D S 1 6 I A D D S 1 6 N S E L E C T

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6S H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6S H U F F L E P A S S

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 P A S SI A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 P A S SS H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 S H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 S H U F F L ES H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 P A S S P A S S

P A S SS H U F F L E

S H U F F L ES H U F F L E S H U F F L E

I A D D S 1 6 I A D D S 1 6 I A D D S 1 6 P A S S

I A D D S 1 6I A D D S 1 6I A D D S 1 6 P A S S P A S SP A S S

I A D D S 1 6 I A D D S 1 6I A D D S 1 6

I A D D S 1 6I A D D S 1 6 I A D D S 1 6

S H U F F L E S H U F F L ES H U F F L E D A T A _ I N

I A D D S 1 6I A D D S 1 6 S H U F F L E P A S SD A T A _ I N

I A D D S 1 6 I A D D S 1 6I A D D S 1 6 P A S SP A S S D A T A _ I N

S E L E C TI A D D S 1 6I A D D S 1 6 D A T A I N

I A D D S 1 6 S E L E C TI A D D S 1 6I A D D S 1 6 N S E L E C T D A T A O U T

I A D D S 1 6 S E L E C TI A D D S 1 6 I A D D S 1 6 D A T A _ I N D A T A _ O U T

I A D D S 1 6 N S E L E C T D A T A _ I N D A T A _ O U T

I A D D S 1 6 N S E L E C TN S E L E C T D A T A _ O U T

L O O PI A D D S 1 6 I A D D S 1 6 D A T A _ O U T

D A T A _ O U T D A T A _ O U T

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INP0 INP1 INP2 INP3 OUT0 OUT1 SP_0 SP_0 COM0 MC_0 JUK0 VAL0

IMULRND16 IMULRND16 PASSIADDS16 NSELECTPASS

IMULRND16 IMULRND16 PASSIADDS16 IADDS16 NSELECTSHIFTA16

IMULRND16 IMULRND16IADDS16 IADDS16

IMULRND16 IMULRND16IADDS16IADDS16SHUFFLE

IMULRND16 IMULRND16SHUFFLE PASS

IMULRND16 IMULRND16IADDS16 IADDS16 PASSIADDS16

IMULRND16 IMULRND16IADDS16 IADDS16

IMULRND16 IMULRND16IADDS16 IADDS16 PASSSHUFFLE

IMULRND16 IMULRND16IADDS16 SHUFFLE

IMULRND16 IMULRND16IADDS16 SHUFFLESHUFFLE

IMULRND16 IMULRND16IADDS16 IADDS16IADDS16 COMMUCPERM

IMULRND16 IMULRND16IADDS16IADDS16IADDS16 COMMUCPERM

IMULRND16 IMULRND16IADDS16IADDS16IADDS16 COMMUCPERM

IMULRND16 IMULRND16IADDS16 IADDS16 PASS PASS

PASSSHUFFLE SELECT

SHUFFLESHUFFLE SHUFFLE SELECT COMMUCPERM

IADDS16 IADDS16 IADDS16 PASSIMULRND16 SELECT

IADDS16IADDS16IADDS16 PASS PASSPASS IMULRND16

IADDS16 IADDS16IADDS16 IMULRND16IMULRND16 NSELECT

IADDS16IADDS16 IADDS16 IMULRND16IMULRND16

IMULRND16IMULRND16 PASS

SHUFFLE SHUFFLESHUFFLE DATA_INIMULRND16 IMULRND16 PASS

IADDS16IADDS16 SHUFFLE PASSDATA_INIMULRND16 IMULRND16 PASS GEN_CISTATE

IADDS16 IADDS16IADDS16 PASSPASS DATA_INIMULRND16 IMULRND16 COND_IN_D

SELECTIADDS16IADDS16 DATA_INIMULRND16 IMULRND16 GEN_CCEND

IADDS16 SELECTIADDS16IADDS16 NSELECTIMULRND16 IMULRND16 SPCREAD_WT SPCWRITEDATA_OUT

IADDS16 SELECTIADDS16 IADDS16 DATA_INIMULRND16 IMULRND16 COMMUCDATADATA_OUT

IADDS16 NSELECT DATA_INIMULRND16 IMULRND16IADDS16 CHK_ANYDATA_OUT

IADDS16 NSELECTNSELECTIMULRND16 IMULRND16IADDS16IADDS16 DATA_OUT

LOOPIADDS16 IADDS16 IMULRND16 IMULRND16IADDS16 NSELECTSELECT DATA_OUT

IMULRND16 IMULRND16IADDS16 IADDS16 SELECT PASSDATA_OUT DATA_OUT

(Above) Single iteration schedule

(Right) Software pipelining shown

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INP0 INP1 INP2 INP3 OUT0 OUT1 SP_0 SP_0 COM0 MC_0 JUK0 VAL0

G E N C I S T A T E

C O N D _ I N _ D

G E N _ C C E N D

S P C R E A D _ W T S P C W R I T E

C O M M U C D A T A

C H K _ A N Y

S E L E C T

S H I F T A 1 6

C O M M U C P E R M

C O M M U C P E R M

C O M M U C P E R M

S E L E C T

S E L E C T C O M M U C P E R M

I M U L R N D 1 6 S E L E C T

I M U L R N D 1 6

I M U L R N D 1 6I M U L R N D 1 6 N S E L E C T

I M U L R N D 1 6I M U L R N D 1 6

I M U L R N D 1 6I M U L R N D 1 6 P A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S S

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 N S E L E C T

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 S E L E C T P A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S SI A D D S 1 6 N S E L E C TP A S S

I M U L R N D 1 6 I M U L R N D 1 6 P A S SI A D D S 1 6 I A D D S 1 6 N S E L E C T

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6S H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6S H U F F L E P A S S

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 P A S SI A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 P A S SS H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 S H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 S H U F F L ES H U F F L E

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6I A D D S 1 6I A D D S 1 6

I M U L R N D 1 6 I M U L R N D 1 6I A D D S 1 6 I A D D S 1 6 P A S S P A S S

P A S SS H U F F L E

S H U F F L ES H U F F L E S H U F F L E

I A D D S 1 6 I A D D S 1 6 I A D D S 1 6 P A S S

I A D D S 1 6I A D D S 1 6I A D D S 1 6 P A S S P A S SP A S S

I A D D S 1 6 I A D D S 1 6I A D D S 1 6

I A D D S 1 6I A D D S 1 6 I A D D S 1 6

S H U F F L E S H U F F L ES H U F F L E D A T A _ I N

I A D D S 1 6I A D D S 1 6 S H U F F L E P A S SD A T A _ I N

I A D D S 1 6 I A D D S 1 6I A D D S 1 6 P A S SP A S S D A T A _ I N

S E L E C TI A D D S 1 6I A D D S 1 6 D A T A I N

I A D D S 1 6 S E L E C TI A D D S 1 6I A D D S 1 6 N S E L E C T D A T A O U T

I A D D S 1 6 S E L E C TI A D D S 1 6 I A D D S 1 6 D A T A _ I N D A T A _ O U T

I A D D S 1 6 N S E L E C T D A T A _ I N D A T A _ O U T

I A D D S 1 6 N S E L E C TN S E L E C T D A T A _ O U T

L O O PI A D D S 1 6 I A D D S 1 6 D A T A _ O U T

D A T A _ O U T D A T A _ O U T

ADD0 ADD1 ADD2 MUL0 MUL1 DIV0 INP0 INP1 INP2 INP3 OUT0 OUT1 SP_0 SP_0 COM0 MC_0 JUK0 VAL0

IMULRND16 IMULRND16 PASSIADDS16 NSELECTPASS

IMULRND16 IMULRND16 PASSIADDS16 IADDS16 NSELECTSHIFTA16

IMULRND16 IMULRND16IADDS16 IADDS16

IMULRND16 IMULRND16IADDS16IADDS16SHUFFLE

IMULRND16 IMULRND16SHUFFLE PASS

IMULRND16 IMULRND16IADDS16 IADDS16 PASSIADDS16

IMULRND16 IMULRND16IADDS16 IADDS16

IMULRND16 IMULRND16IADDS16 IADDS16 PASSSHUFFLE

IMULRND16 IMULRND16IADDS16 SHUFFLE

IMULRND16 IMULRND16IADDS16 SHUFFLESHUFFLE

IMULRND16 IMULRND16IADDS16 IADDS16IADDS16 COMMUCPERM

IMULRND16 IMULRND16IADDS16IADDS16IADDS16 COMMUCPERM

IMULRND16 IMULRND16IADDS16IADDS16IADDS16 COMMUCPERM

IMULRND16 IMULRND16IADDS16 IADDS16 PASS PASS

PASSSHUFFLE SELECT

SHUFFLESHUFFLE SHUFFLE SELECT COMMUCPERM

IADDS16 IADDS16 IADDS16 PASSIMULRND16 SELECT

IADDS16IADDS16IADDS16 PASS PASSPASS IMULRND16

IADDS16 IADDS16IADDS16 IMULRND16IMULRND16 NSELECT

IADDS16IADDS16 IADDS16 IMULRND16IMULRND16

IMULRND16IMULRND16 PASS

SHUFFLE SHUFFLESHUFFLE DATA_INIMULRND16 IMULRND16 PASS

IADDS16IADDS16 SHUFFLE PASSDATA_INIMULRND16 IMULRND16 PASS GEN_CISTATE

IADDS16 IADDS16IADDS16 PASSPASS DATA_INIMULRND16 IMULRND16 COND_IN_D

SELECTIADDS16IADDS16 DATA_INIMULRND16 IMULRND16 GEN_CCEND

IADDS16 SELECTIADDS16IADDS16 NSELECTIMULRND16 IMULRND16 SPCREAD_WT SPCWRITEDATA_OUT

IADDS16 SELECTIADDS16 IADDS16 DATA_INIMULRND16 IMULRND16 COMMUCDATADATA_OUT

IADDS16 NSELECT DATA_INIMULRND16 IMULRND16IADDS16 CHK_ANYDATA_OUT

IADDS16 NSELECTNSELECTIMULRND16 IMULRND16IADDS16IADDS16 DATA_OUT

LOOPIADDS16 IADDS16 IMULRND16 IMULRND16IADDS16 NSELECTSELECT DATA_OUT

IMULRND16 IMULRND16IADDS16 IADDS16 SELECT PASSDATA_OUT DATA_OUT

(Above) Single iteration schedule

(Right) Software pipelining shown

Software Pipelining

FIG 6FIG 6FIG 6

Single Iteration Schedule

7x7 Convolution Kernel From Depth
Extraction Application

60 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 61 more queue: www.acmqueue.com

sor in C, learning to use the stream programming tools
and writing a complex streaming application still
represents a signifi cant effort. For evolutionary applica-
tions, it is often easier to reuse the existing code base for
a conventional DSP, or the existing netlist for an ASIC
rather than to develop new streaming code. An applica-
tion must require both effi ciency and fl exibility to over-
come this inertia.

THE FUTURE IS STREAMS
Figure 9 shows a roadmap
that illustrates how we
expect stream processors
to evolve with improving
semiconductor process
technology. The fi gure
shows two lines of evolu-
tion. The top line repre-
sents fl oating-point stream
processors (that, like Imag-
ine, support 32-bit fl oat-
ing-point operations), and
the bottom line represents
fi xed-point processors that
support just 8-, 16- and
32-bit integer operations.
Integer operations are
suffi cient for most signal
processing operations and,
as the fi gure indicates,
are signifi cantly more
effi cient in terms of both
area and power. Each point
in the roadmap repre-
sents a stream processor
(integer or fl oating point)
implemented in a par-
ticular technology with a
nominal die size of 1 cm2
(1.3 cm2 for the fl oating-
point processors). For each
point, the fi gure shows the
performance and power
at full voltage and the
performance and power at
reduced voltage (for more
effi cient operation). The
performance, power, and
area may be scaled up or
down over a wide range by

Stream
Processors

Programmability with Effi ciency

DSPsFO
CU

S

matrixx coordinate
transform

viewportort project

lightss shader rasterize

span
prep

span
convert

sort

hash

merge

compact

Z compare

depth
buffer

image
buffer

SRF allocation

FIG 7
open GL graphics pipeline

60 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 61 more queue: www.acmqueue.com

varying the number of clusters in the stream processor.9

The main competition for stream processors are fi xed-
function (ASIC or ASSP) processors. Though ASICs have
effi ciency as good as or better than stream processors,
they are costly to design and lack fl exibility. It takes about
$15 million and 18 months to design a high-performance
signal-processing ASIC for each application, and this cost
is increasing as semiconductor technology advances. In
contrast, a single stream processor can be reused across
many applications with no incremental design cost, and
software for a typical application can be developed in
about six months for about $4 million.10 In addition, this
fl exibility improves effi ciency in applications where mul-
tiple modes must be supported. The same resources can
be reused across the modes, rather than requiring dedi-
cated resources for each mode that remain idle when the
system is operating in a different mode. Also, fl exibility
permits new algorithms and functions to be easily imple-
mented. Often the performance and effi ciency advantage
of a new algorithm greatly outweighs the small advantage
of an ASIC over a stream processor.

FPGAs are fl exible, but lack effi ciency and program-
mability. Because of the overhead of gate-level confi gu-
rability, processors implemented with FPGAs have an
effi ciency of 2-10 MOPS per megawatt, comparable to
that of conventional processors and DSPs. Newer FPGAs
include large function blocks such as multipliers and
microprocessors to partly address this effi ciency issue.
Also, though FPGAs are fl exible, they are not program-
mable in a high-level
language. Manual design to
the register-transfer level is
required for an FPGA, just
as with an ASIC. Advanced
compilers may someday
ease the programming
burden of FPGAs.

With competitive
energy effi ciency, lower
recurring costs, and the
advantages of fl exibility,
we expect stream proces-
sors to replace ASICs in the
most demanding of signal-
processing applications. Q

REFERENCES
1. Kanade, T., Yoshida,
A., Oda, K., Kano, H.,
and Tanaka, M. A stereo

machine for video-rate dense depth mapping and its new
applications. Proceedings of the 15th Computer Vision and
Pattern Recognition Conference (June 1996), 196−202.
2. Khailany B., Dally, W. J., Rixner, S., Kapasi, U. J.,
Owens, J. D., Towles, B. Exploring the VLSI scalability of
stream processors. Proceedings of the Ninth International
Symposium on High Performance Computer Architecture (Feb.
2003), 153−164.

Imagine: Prototype Stream Processor

HI

SRF
M

ba
nk

0
M

ba
nk

1
M

ba
nk

2
M

ba
nk

3

SC NI
microcontroller

cluster 7

cluster 6

cluster 5

cluster 4

cluster 3

cluster 2

cluster 1

cluster 0

FIG 8FIG 8

Imagine

floating
point

floating
point

floating
point

fixed
point

fixed
point

fixed
point

FI
G

 9
FI

G
 9

FI
G

 9

62 March 2004 QUEUE rants: feedback@acmqueue.com

3. Owens, J. D., Khailany, B., Towles, B., and Dally, W. J.
Comparing Reyes and OpenGL on a stream architecture.
Siggraph/Eurographics Workshop on Graphics Hardware (Sept.
2002), 47−56.
4. A high-end superscalar processor may consume 10 nJ
or more per instruction because of much greater over-
heads required for acceleration techniques such as branch
prediction, register renaming, and out-of-order execution.
5. Rixner, S., Dally, W. J., Khailany, B., Mattson, P., Kapasi,
U. J., and Owens, J. D. Register organization for media
processing. Proceedings of the Sixth International Symposium
on High Performance Computer Architecture (Jan. 2000),
375−387.
6. Mattson, P., Dally, W. J., Rixner, S., Kapasi, U. J., and
Owens, J. D. Communication scheduling. Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating Systems (Nov. 2000),
82−92.
7. Kapasi, U. J., Dally, W. J., Rixner, S., Mattson, P. R.,
Owens, J. D., and Khailany, B. Effi cient conditional opera-
tions for data-parallel architectures. Proceedings of the 33rd
Annual IEEE/ACM International Symposium on Microarchi-
tecture (Dec. 2000), 159−170.
8. Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J.,
Mattson, P., Namkoong, J., Owens, J. D., Towles, B., and
Chang, A. Imagine: Media processing with streams. IEEE
Micro 21, 2 (Mar./Apr. 2001), 35−46.
9. See reference 2.
10. Robles, R. The cost/benefi t ratio of ASICs in wireless
baseband modems. Communications Design Conference
(Oct. 2003); http://www.commdesignconference.com/
archive/papers/2003/P212.htm.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

WILLIAM J. DALLY is the Willard R. and Inez Kerr Bell
Professor of Engineering at Stanford University. Dally has
done pioneering development work at Bell Telephone
Laboratories, Caltech, and the Massachusetts Institute of
Technology, where he was a professor of electrical engi-

neering and computer science. At Stanford University,
his group has developed the Imagine processor, which
introduced the concepts of stream processing and parti-
tioned register organizations. Dally has worked with Cray
Research and Intel to incorporate many of these innova-
tions in commercial parallel computers, with Avici Sys-
tems to incorporate this technology into Internet routers,
and he cofounded Velio Communications to commercial-
ize high-speed signaling technology, and Stream Proces-
sors to commercialize stream processor technology. He
is a fellow of IEEE and ACM, and has received numerous
honors including the ACM Maurice Wilkes award. He has
published more than 150 papers in these areas and is an
author of the textbooks Digital Systems Engineering (Cam-
bridge University Press, 1998) and Principles and Practices
of Interconnection Networks (Morgan Kaufmann, 2003).
UJVAL J. KAPASI was expected to receive his doctorate
from Stanford University in February 2004. His research
interests include computer architecture, scientifi c
computing, and language and compiler design. While
at Stanford, he was an architect of the Imagine stream
processor and contributed to the VLSI implementation
of an Imagine prototype. Recently, he cofounded Stream
Processors, which is commercializing the stream-process-
ing technology developed at Stanford.
BRUCEK KHAILANY received his Ph.D. from Stanford
University in 2002, where he was the principal VLSI
designer of the Imagine stream processor. Recently, as a
cofounder of Stream Processors, he has been working on
the commercialization of stream processors in a variety of
application areas. He is a member of IEEE and ACM, was
an Intel Foundation fellowship recipient at Stanford, and
received a BSEE from the University of Michigan in 1997.
JUNG HO AHN is a Ph.D. candidate in electrical engineer-
ing at Stanford University. His research interests include
computer architecture, stream architecture, advanced
memory design, and compiler design. Ahn received an
MS in electrical engineering from Stanford. He is a stu-
dent member of ACM and IEEE.
ABHISHEK DAS is a Ph.D. candidate in electrical engi-
neering at Stanford University. He received his B.Tech in
computer science and engineering from IIT Kharagpur,
India. His research interests include compiler and lan-
guage design, computer systems software, and computer
architecture. He has worked on making TCP/IP feasible
for the Bluetooth technology at the IBM Research Center,
India. He is currently involved in the development and
enhancement of the compiler and architecture for the
Merrimac and Imagine architectures.
© 2004 ACM 1542-7730/04/0300 $5.00

Stream
Processors

Programmability with Effi ciency

DSPsFO
CU

S

