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Abstract

This paper describes the design and implementation of the floating-point adder in the
Stanford Nanosecond Arithmetic Processor (SNAP). The adder is capable of adding two
double precision IEEE numbers in less than 20ns nominal with all IEEE rounding modes.
Only round to nearest is described in this paper, however. The adder has been laid out in
the HP CMOS26 1um process with triple-layer metal, occupying a silicon area of roughly
14.5mm?2.

The SNAP adder is smaller yet faster than existing floating-point adders in the literature
because (a) it has a fast modified Ling integer adder, (b) it uses a fast leading-one prediction
circuit, and (c) it uses a rounding method that allows a reduction in the number of operations
required in the critical path. Logically, the adder still uses a two-path approach as suggested
by Farmwald, but it merges the two paths to reduce the number of adders, thereby saving
hardware.

The modified Ling integer adder has been shown to have a speed advantage over other
adder organizations in the context of FP addition because (a) the carry out path in the
adder is sped up and (b) IEEE FP numbers have a hidden one bit. This means that the
bit propagate of the most significant bit in the Ling carry lookahead equation is always one
for normalized numbers and therefore needs not be implemented.
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1 Introduction

The Stanford Nanosecond Arithmetic Processor (SNAP) project is an on-going research
activity aiming at extending the current state-of-the-art in floating-point (F'P) technology
through efforts at all levels, including packaging, circuit, logic, architecture, algorithm, and
CAD. The demonstration vehicle is an FP coprocessor of multiple chips, built with such
diverse technologies as ECL, CMOS, BiCMOS, GaAs, etc. These chips are attached through
surface tension of a fluid to an active substrate, which provides not only mechanical support
and cooling, but also electrical connection. The chip set computes the primitive functions
required by the IEEE 754 standard [2] — add, multiply, divide, remainder, and square
root. High-order transcendental functions are computed using the CORDIC algorithm
[1, 5]. The detail and the scope of the project have been described by Flynn et al. [6]; this
paper describes the FP adder in the chip set.

The SNAP FP adder has the following features. First, it uses a fast rounding algorithm
that reduces the number of operations in the critical path. The number of significand
addition has been reduced to one from two in existing algorithms. It uses a modified Ling
adder that speeds up the carry out path. Finally, it uses a slightly different leading one
prediction (LOP) method from that used in the RS/6000. We believe that our LOP circuit
consumes less hardware and is faster than the RS/6000 one. The net result is that the
SNAP FP adder is smaller, yet faster than the existing ones reported in the literature. This
paper focuses more on the implementation aspects of the adder. The reader is referred to
[9] for a fuller discussion on the algorithm.

The remainder of this paper is organized as 7 sections. Section 2 describes the general
operation of the adder. Section 3 presents the components in the adder in greater detail.
Section 4 describes the functional simulator we have developed for the adder. In this
simulator, all IEEE rounding modes were simulated. Section 5 addresses the implementation
issues (e.g., layout, SPICE issues, etc.) of the adder. Most F'P adders support both single
and double precision operations and are usually pipelined to increase the throughput of the
unit. In Section 6, we explain the modification needed for single-precision operations and
show a way to pipeline the adder in Section 7. We then summarize in the final section.
This paper was used as a design manual during the implementation stage of the adder and
as such takes the form of a manual.

2 Operation of the adder

The SNAP adder uses the following fact to speed up its operation. When a massive right
shift is needed during alignment, the result may need a left shift of at most 1 bit to normalize.
On the other hand, when a right shift of 1-bit or less is needed for alignment, the result
may require a massive left shift. Consequently, the major operations in the critical path of
the adder consist of either a massive right shift followed by a significand add (the SA path)
or a significand add followed by a left shift (the AS path).

This two-path operation has been known for quite some time [7] and has been used in
most existing high-speed FP units in the industry [4, 3]. The SNAP adder extends the



algorithm in two ways. First, it doesn’t have an explicit rounding step; the rounding step
is performed with the significand addition step. Second, the SNAP adder has only one
significand adder as opposed to two in the other FP units.!

Fig. 1 is a block diagram of the adder, which works as follows. In the exponent path, the
exponent adder computes the absolute difference of the exponents, F, for the alignment
shifter. The larger exponent is selected as the input into the exponent adjust adder. During
normalization, the significand may need a right shift, no shift, or a variable number of left
shift. The exponent adjust adder must be prepared to deal with all of these cases, the
challenge being to manipulate the logic equations such that the exponent path does not
become a critical one.

In the significand path, the operands are swapped as needed depending on the result of
the exponent subtraction step. The path_selection_unit examines F to select the correct
input. The inputs into the significand adder are: the significand of the larger operand
and one of the three versions of the aligned significand of the smaller operand: unshifted,
right shifted by 1 bit, and right shifted by many bits. The shifted by many bits version is
provided by the right shifter, which also computes information needed for the sticky bit.
We chose to swap the operands because it reduces the number of alignment shifters needed
in the FP adder. An added benefit of this arrangement is that the larger operand is always
normalized, allowing a simplification in the significand adder as we shall see.

The FP adder handles both subtraction and addition. Depending on the signs of the
operands, an addition called for in an instruction may actually be performed as a subtrac-
tion. The actual operation performed by the adder is called the effective operation. During
an effective subtraction step, the significand of the smaller operand is complemented.

The significand adder computes all possible outcomes needed to obtain the final result,
normalized and rounded. In general, the result may require a rounding step or a complemen-
tation step (as explained below). Because of the possible right shift during normalization,
the rounding step may require adding up to 2 ulp,? requiring 3 outcomes be computed in
the significand adder for fast rounding. For the round to nearest mode, we were able to
reduce the number of outcomes to two: A + B, and A+ B + 1(ulp).

The adder is a Ling type adder modified for CMOS technology [8]. Briefly, the idea
of a Ling adder is to propagate a simplified carry to reduce the complexity of the group
generate circuitry in the carry lookahead tree. Normally, the local sum logic has to recover
the true carry from this simplified one at a cost of some hardware and delay. The modified
Ling adder avoids these penalties through use of a clever organization. Further, because the
larger operand is always normalized, the bit propagate at the most significant bit is one.
This means that the factored p; term in the Ling carry lookahead equation needs not be
implemented.?

Though the significand adder computes both A + B and A + B + 1(ulp), only the
carry chain needs to be duplicated as in a conditional sum adder. The outputs of the
significand adder will be appropriately selected by the GRS unit to account for rounding

'Only in a 2-stage pipelined implementation does the unit require 2 adders. This is due to a resource
conflict as pointed out in a later section. A 3-stage pipelined implementation requires only one adder.

2 ulp stands for unit in the last place.

9Extra logic is needed to handle denormalized numbers.



or complementation. The GRS unit also computes the true guard, round, sticky bits, and
the bit to be left shifted into the result during normalization. When the operands are close
in magnitude, the result may need a massive left shift for normalization or a negation (for
a negative result), or both. This gives rise to the complementation case mentioned above.
GRS must also handle these cases. The development of the logic equation for GRS has
been described in Quach and Flynn [9].

To remove an otherwise critical path during alignment, the amount of left shift is pre-
dicted by the LOP unit based on the inputs into the significand adder. The LOP predicts
the shift amount to within one bit, which is later made up by an additional 1 bit fine ad-
justment shift. There are two ways to perform this fine adjustment shift. The first way is
to predict such a case from the inputs into the LOP unit. This approach requires some
hardware. The second approach is to simply wait for the result from LOP to arrive and, by
examining the most significant bit of the result, the need for a 1-bit fine adjustment shift
can be determined. This approach consumes no extra hardware, but pays a price in latency
because operations are now serialized. SNAP uses the second approach and an LOP circuit
that is similar in operation to the one used in the IBM RS/6000 processor.

Finally, the four possible results are selected to yield the final, rounded and normalized
result. These possibilities arise because the result may need a 1-bit right shift, no shift,
a 1-bit left shift, and a left shift of many bits. The control circuitry for selecting among
these results depends on the following parameters: the difference in the exponent, the carry-
out bit and the most significant bits of the results computed in the significand adder, the
effective operation, and the round bits.

The overall control of the FP adder is simpler than that reported in [9]. In the following
section, we go through each component in the adder in a greater detail.

3 Design and Analysis of the Adder

The FP adder consists of the following components:
e Significand swapper (swapper)
e Absolute exponent adder (EzpAdd)
e Absolute exponent muxes (muz Abs)
e Exponent adjust adder input selection muxes (muzF f)
e Exponent adjust adder input logic (ELOGIC)
e Exponent adjust adder results select logic (C'ink' A)
e Exponent adjust adder (FazpAdy)
e Sign logic (SIGN)

e Paths selection logic (PSL1 and PSL)
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Figure 1: The SNAP FP Adder.



e Alignment shifter and sticky bit logic (Rs55 and SB)

e Significand adder input selection muxes (muz53tto)

e Significand adder (ComAdd)

e Normalize amount predictor or leading one predictor (LOP)
e Normalize amount encoder (ENC)

e Round logic (GRS)

e Normalization shifter (Ls55)

e One’s complementor (OneC'om)

e l'ine adjustment muxes (muzI'A)

e Pinal result selection muxes (muxz53 fto)

Referring again to Fig. 1, the significand result selection muxes (MuzCA) has been
explicitly shown in the figure. In the current implementation, muxzC'A is embedded in the
adder. We describe each unit in more detail below. But first, an explanation on notation
is in order.

3.1 Notation

X (i) denotes the ith bit and ~ X the bit inversion of a bit vector X. X is the logical
inversion of a logic signal X and X _c the result of an addition with a carry in ¢ where
c € [0,1]. X.Y is the Y bit of a quantity or a computation X. OP(X,Y) is the logical
operation OP of X and Y, where OP is one of the boolean operations. F,, Fs, and E are
the exponents; S,, Sy, and Sy the signs; and F,, Fy, and F; the significands of the operands
and the results, respectively. For equations, V is used for logical OR, juxtaposition or A for
AND, and & for XOR. For notational convenience, X; and Xs are used interchangeably
when there is no ambiguity. Fs and FE's, for example, represents the same signal.

3.2 Significand swapper (swapper)
o Inputs: S,, Fy, Sy, Fy, and Cepp

Outputs: Fy and Fj.

Function: If Cepp, then Fy = F, and Iy = I}y else Iy = Iy and Fy = F,.

FEzxplanation: This unit accepts the 53-bit significands of the operands as inputs and
depending on Cy;,,, which is the carry-out from the absolute exponent adder, performs
a swap.



3.3

3.4

3.5

Absolute exponent adder (FzpAdd)
Inputs: F, and Fj.
Outputs: F,0, F,_1, and Ceyp.

Function:
E, 0= FE,+ ~F)

Es1=FE+~Fy+1

and

Cerp - Es—o-cout

FEzplanation: FxpAdd computes the two results needed for determining the absolute
difference of the exponents so that the shift amount can be quickly determined. This
adder computes both results (i.e., A+ B and A+ B+ 1(ulp)) because when the result
is negative (i.e., when C;, = 0), it needs to select the inverse of the A+ B(ulp) result.

Absolute exponent muxes (MuxAbs)
Inputs: F; 0, F;_1, and Cepyp.
Outputs: FEs.

Function: If Cepp, Fs = F_1 else Es =~F; 0.

FEzxplanation: Muz Abs selects the result of the exponent subtraction step. When
Ceep = 1, the result is positive, hence Fs_0is chosen. Otherwise, the result is negative,
and we need to select F's_1 and bit invert it to obtain a positive result.

Exponent adjust adder input selection muxes (Muz F[)
Inputs: Fa, Fb, and Cepyp.

Outputs: Fyy.

Function: If Cepp, Fp1 = Ey else Eyy = F,.

FEzxplanation: MuzE f selects the exponent of the larger operand.

Exponent adjust adder input and result selection logic (ELOGIC and
CinEA)

Inputs: Frop, Fo, Cgine, NXS, MLS, and ORS.
Outputs: F,q; and Ciy, ga

Function: see explanation.



3.7

Table 1: Possible adjustments for the exponent

Case Ey Eqg Cin_FA
MLS FEp — Erop ~Erop 1
MLS Efl—ELop—l ~Frop 0
OLS Ep-—1 All s 0
NXS Ep Al s 1
ORS Ep+1 ALOs 1

o Ezplanation: ELOGIC computes E,4;, the amount of adjustment to be added to £y

to obtain the final exponent. There are five possibilities: (a) £ — Erop for the case
of a massive normalization shift, (b) ¢ — Erop — 1 for the same case as (a) with a
fine adjustment shift, (c) E¢ — 1 for the case of a 1-bit left shift, (d) £y for the case
of no shift, and (e) E¢; 4 1 for the case of a 1-bit right shift. The unit takes care of
these cases as shown in Table 1

In the table, F,4; is the output of the FLOGIC unit. The logic equations for F4;
and C'in_F A can be determined from the table as

Faqi(i) = (Eo AMLS) vV (MLS A Erop(i))
and
Cinga=0ORSV (EoANXS)V (MLSACfine)

where Cy;pe is the fine adjustment signal. Note that in the case of NXS, we first
subtract and later add one to E'¢; to avoid having N XS or OLS in the E,4; equation,
because these signals are known late in the significand addition step and may cause
additional delay in the SA path.

Exponent adjust adder (FxzpAdy)
Inputs: Fyy, Fqq;, and Cin_FA.
Outputs: Ey.

Function:

Ef0=FEn+ Eu

and
Efl=Fn+ F.q+1

if Cin_.EA then Fy = Ef lelse By =FEf0



e Fzxplanation: FrpAdj is the same as FapAdd. In principle, the speed requirement on
this adder is not as critical and a less hardware intensive, and slower adder, such as a
carry-skip one, can be used to save hardware. This optimization is not performed in
the current implementation due to time constraint.

3.8 Sign logic (SIGN)
e Inputs: Sa, Sb, Ceyp, and Coy.
e Qutputs: Sy.

e [unction:

Sf = (Cexp V C—ca)sa V (Cexpcca)sb;

e Fzplanation: The equation seems complicated because the sign may be affected by
both C¢;, and C,. We must consider the following cases: When C¢., = 1, we know
that A is larger than B. But when C.;, = 0, all we can say is A < B and the result
from the significand adder may be negative. The equation is developed with this in
mind.

3.9 Path selection logic (PSL)
o Inputs: Fs.
e Qutputs: ns, os, and ms.

e [Function:
Esog = AND(E5<0 H 9>)
Fs10 = F4(10)
ns = K9 A Fsio

0s = Fso9 N Fs10

ms = Fo9

e Fzplanation: PSL controls the inputs into the significand adder on the smaller
operand side. It examines F; to determine these conditions.

3.10 Path selection logic (PSL1)
o Inputs: Fsg, Fsi0, Eo, F'2.ms(53 : 55), and C,.
o Qutputs: MLS, ORS, NXS,OLS, b,, b,+1, and s.



e Functions: L L
b, = Fso9 A F'm(53) V Eso9F10C)s
but1 = Eso9 A Fm(54)
s = Fy9 A Fm(55)
ORS = E,Cy,
NXS=F,CoqV E,Fyos |[F51(0)(by Vb1 V 5) V F5.0(0) (b V b1 V 5)]|
MLS = F,F g

and

OLS = B,y | F5_1(0) (b V b1 V 5) V F5 0{0) (b V by V 5)]

where F'm(55) is the logical OR of all bits beyond the round bit.

e FEzplanation: F'm(55) is the sticky bit computed by the shifter. Note that only the
ORS, NXS, and OLS bits depend on the results from the significand adder. This
means that M LS arrives early, allowing the FLOGIC and FxpAdj units to get ahead
of the significand adder.

3.11 Alignment Shifter and sticky bit logic (Rs55 and SB)
e Inputs: F2 and FEj.

e Qutputs: F2_ms

e [unctions:
F2_ms=F2> Fs

e Fzplanation: Rsbb shifts F'2 by F; bits. SB determines the sticky bit. The guard
and round bits are the least significant bits from Rsb5. Together, these bits allow a
proper determination of the b,, b,1, and the s bits, which are the final guard, round,
and sticky bits.

The shifter has 2 stages. The first stage performs shifts of a 8-bit multiple (0, 8, 16,
24, 32, 40, and 48) and the second stage a 1-bit multiple (0, 1, 2, 3, 4, 5, 6, and 7).
An alternative design would be to use a 3-stage shifter. The first stage performs shifts
of 0, 1, 2, or 3 bits; the second stage performs shifts of 0, 4, 8, or 12 bits; and the
last stage performs shifts of 0, 16, 32, or 48 bits. But the two-stage shifter has the
advantage that it has a pitch that matches more closely to that of the significand
adder than a 3-stage one does.

The 55th bit of Rsb5 is the sticky bit, determined by ORing the control signals in the
S B unit as shown in Table 2.

In the table, A = F(5), B = Es(6), C = E(7), D = F(8), E = E,(9), ' = F(10).
Note that the logic equations in this table does not detect the case when E; > 53. In



Table 2: Control signals for computing the sticky bit

Shift Amount  Equation Bit No.  Shift Amount Equation Bit No.
3 A+B+C+ D+ EF 52 30 A+ BCDE 25
4 A+B+C+D 51 31 A+ BCDEF 24
5 A+B+C+D(E+F) 50 32 A 23
6 A+B+C+ DE 49 33 AB+C+D+E+F) 22
7 A+ B+ C+ DEF 48 34 A(B+C+D+E) 21
8 A+B+C 47 35 A(B+C+ D+ EF) 20
9 A+B+C(D+E+F) 46 36 A(B+C+ D) 19
10 A+ B+ C(D+E) 45 37 A[B+C+ D(E+ F)] 18
11 A+ B+ C(D+EF) 44 38 A(B+C+ DE) 17
12 A+ B+CD 43 39 A(B+ C+ DEF) 16
13 A+ B+ CD(E+F) 42 40 A(B+C) 15
14 A+ B+ CDE 41 41 A[B+C(D+ E+ F)] 14
15 A+ B+ CDEF 40 42 A[B+C(D + E)] 13
16 A+ B 39 43 A[B+ C(D + EF)] 12
17 A+B(C+D+E+F) 38 44 A(B 4+ CD) 11
18 A+ B(C+ D+ E) 37 45 AB+ CD(E+ F)] 10
19 A+ B(C+ D+ EF) 36 46 A(B 4+ CDE) 9
20 A+ B(C+ D) 35 47 A(B+CDEF) 8
21 A+ B[C+D(E+F)] 34 48 AB 7
22 A+ B(C+ DE) 33 49 B(C+D+E+F) 6
23 A+ B(C+ DEF) 32 50 B(C+ D+ E) 5
24 A+ BC 31 51 B(C+ D+ EF) 4
25 A+ BC(D+E+F) 30 52 B(C + D) 3
26 A+ BC(D+E) 29 53 B[C + D(E+ F)] 2
27 A+ BC(D + EF) 28

28 A+ BCD 27

A+ BCD(E + F)

26

10



Table 3: Partition of the Sticky Bit Logic Equations

Shift Amount Equation Bit No.  Shift Amount Equation Bit No.
3 ~(ABQ)) 52 30 ~[AB+Q,,)] 25
4 N(EEQQ) 51 31 N[Z(E + 613)] 24
5 ~(ABQ,) 50 32 A 23
6 ~(ABQ,) 49 33 ~(A+BQ,,) 22
7 ~(ABQ;) 48 34 ~(A4+BQ,;) 21
8 ~(AB Q) 47 35 ~(A+BQ)) 20
9 ~(ABQ,) 46 36 ~(A+BQ,) 19
10 ~(AB Q) 45 37 ~(A+BQ,) 18
11 ~(ABQ,) 44 38 ~(A+BQ,) 17
12 ~(ABQ,,) 43 39 ~(A+ BQy) 16
13 ~(ABQ,,) 42 40 ~(A+BQ,) 15
14 ~(ABQ,,) 41 41 ~(A+BQ,) 14
15 ~(ABQ,,) 40 42 ~(A+BQ,) 13
16 ~(AB) 39 43 ~(A+BQ,) 12
17 N[E(E"’ 914)] 38 44 N(E"’ Eglo) 11
18 ~[A(B+Q,5)] 37 45 ~(A+BQ,,) 10
19 N[E(E"’ gl)] 36 46 N(E"’ ng) 9
20 N[é(§+ QQ)] 35 47 N(é"‘ Ele) 8
21 ~[A(B+ Q,)] 34 48 ~(A+ B) 7
22 ~[A(B+Q,)] 33 49 ~A+B+Qu) 6
23 ~[A(B+ Q)] 32 50 ~(A4+B+Q5) 5
24 ~MAB+Q)] 31 51 ~A+B+Qi) 4
25 ~[A(B+@Q,)] 30 52 ~(A+B+Q2) 3
26 ~A(B+ Q)] 29 53 ~(A+B+Q;) 2
27 ~AB+ Q)] 2

28 N[E(E"’ glo)] 27

29 ~AB+ Q)] 26

11



this case, s = 1, always. Because this sticky bit logic is to be implemented in random
logic, we like to reduce the type of logic gates using the partition in Table 3.

Where

@ = C+D+EF
Q = C+D

Q: = OXDEFDH
Q1 = C+DE

Qs = C+DEF

Q = C

Qr = CD+E+VF)
Qs = C(D + E)

Qs = C(D+EF)
QlO = @

Qu = CDETF)
Qi: = CDE

Qiz = CDEF

Qu = C+D+E+F
Qs = C+D+E

In this partition, we only need to implement 15 types of gates as opposed to 53 in
the orginal equations. For shift amounts from 3 to 15, (J12 is used; for 16, (J1¢ is used;
from 17 to 31, Qg is used; for 32, Qg (which is an inverter) is used; from 33 to 47, (4
is used; for 48, ()7 is used; and finally for 49 to 53, ()15 is used. The output of each
gate is to be AND’ed with the input signal (which is to be shifted in the shifter).

3.12 Significand adder input selection muxes (Mux53tto)

Inputs: F2, F2_os, F2_ms(0 : 52), ns, os, and ms.
Outputs: Fin.

Function:

Case ns Fin = F2

Case os, Fin = F'2_os

Case ms, Fin = F2.ms(0 : 52)

FEzplanation: These muxes selects among the unshifted, shifted by 1 bit, and shifted
by many bits version of F2 based on F,. If the first 10 bits are not equal to 0, we
select F2.ms(0 : 52). If they are all equal to 0, then the 11th bit decides between the
shifted and the unshifted versions.

3.13 Significand adder (ComAdd)

Inputs: E,, Iy, Fin, and GRS.

12



e Qutputs: F's and C,.

o Function: If E/, then Fin =~Fin

Fs0=F + Fin

Fsl=F+Fin+1
Cca = FS_O.Cout
If Cars then Fs = Fs_1 else F's = Fs_0.

e Fzxplanation: It is basically a 53-bit adder with a duplicate carry-lookahead chain. We
describe the adder in greater detail in the following subsections.

3.13.1 Logic Block Diagram and Naming Convention

| —»
I GsI I(34I I(35 I b9 b10 | | b1l
3-bits | | 3-bits | [3-bits
. Y Ay X
cin=0 . . .
i1l Intrablock Carry(gbj,pbj) Ling Ggi and Pgi
1N=
Compute Compute
A+B, A+B+1 atb,atb+1
Selected by Ck_0,Ck_1 Selected by gbj,pbj

~ ~

[of[2]2] BEBEEE
[ 11 ([ 1 | ] [ I( ] ]
B4

BO B1 B2 B3 B5
9-hits 9-hits 9-hits 9-hits 9-hits 9-hits
[ [ [
) C1 \ Cc2 C3 C4 C5
Cin=0 Ling Carry Lookahead(Ck_0,Ck 1) _Cout
Cin=1 Compute Sum, Sum+1

Figure 2: Block diagram and naming convention for the significand adder in the SNAP
adder

Fig. 2 is the logic diagram of C'omAdd. Note that the first group has only two bits.
This is to reduce the number of serial transistors in the group generate gate when

13



ai+%11fi+2
&)
T

»
o \—|VE|V0|
I
- Bt
'® T
=
? |
2B THe— _ -
=
-
(@)

uit diagram of a 3-bit group

Figure 3: Circ

14



Cin = 1 as shown in a later figure. Fig. 3 is the circuit diagram of a 3-bit slice for
Groups 1, 2, 4, 5,7, 8,10, 11, 13, 14, 16, and 17.

In principle, the circuits for Groups 3, 6, 9, 12, and 15 are simpler because the carries
are known at those positions. However, to reduce layout time, we simply hardwire
the circuits in Fig. 3. Groups 0 is special because it has only two bits and therefore
must use a different circuit.

The process of carry generation is shown in Fig. 4. Fig. 6 and Fig. 5 show the group
generate circuits for a two and three bit groups, respectively.
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Figure 4: The process of carry generation in the SNAP FP adder.
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Figure 6: Group generate circuit for Group 1 with Cin=1
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Fig. 7 shows the block generate circuit. Roughly, the critical path of the adder consists
of 4 such gates.

Vdd
—d
_J
—o||: —ld =
<L P ghj
- —
| —
Ggi+2 Pgi+1
D_
_— L ~ | PC.'
D- | |_ gi
Ggi+1 |_< -
Gai

Vss

Figure 7: Block generate circuit

3.14 Normalize amount predictor or leading-one predictor (LOP)
e Inputs: T;, G;, P;, and Z;.
o Qutputs: F'rop, and Cype.
o Function:

e Fzplanation: This unit performs leading one prediction.

The equation for U; is

Ui =(Tici®Gi)Zig1 V (Tim1 & G)Giga

An additional parallel means must be provided to locate the first U; that is 0. This
can be done as follows:

Fropi = AND(Un.iy1y, Ui-1)
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The logic equations for the U; have been explained in [10].*

After the input is shifted by an amount indicated by Frop, the output is at most off
by one bit; hence, we can simply observe the MSB of the result and determine if an
additional 1b left shift is needed

3.15 Normalize amount encoder (FNC)

Inputs: Frop

Outputs: Frop

Functions:

Erop(0) = OR(Frop(1,3,5,7,9,11,13, 15,17, 19,21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,43, 45, 47, 49, 51))

Erop(l) = OR(Frop(2,3,6,7,10,11,14, 15,18, 19,22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51))

Erop(2) = OR(Frop(4,5,6,7,12,13,14, 15,20, 21,22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 52))

Erop(3) = OR(Frop(8,9,10,11,12,13, 14, 15, 24, 25, 26, 27, 28, 29, 30,31, 40, 41, 42, 43, 44, 45, 46, 47))
Erop(4) = OR(Frop(16,17,18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51, 52))
Erop(5) = OR(Frop(32,33,34,35,36,37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52))

Fzplanation: Frop is stored as a 1-of-N code. ENC' encodes it into a 2’s complement
number, Erop. Again, our numbering convention starts with zero at the MSB.

3.16 Round logic (GRS)

InPUtS: bn7 bn+17 5, E5097 E5107 5527 5517 Ccm Em and FS—0<0>
Outputs: Cgrs and q.

Function: This unit determines the C'grs and the ¢ bits. Cgrg selects between Fs_0
and Fs_1. q is the bit to be left shifted into the result during normalization and its
logic equation is:
q= bn bn—}-l sV bnbn+1
The derivation of Cars’s logic equation is based on a case by case analysis as described
in [9]:
Cors = B, [CcaS52 (bn Vbpy1 VsV 551) vaoabn(bn-}—l VsV 552)] \%
EoEsog {En Bn+1 sV FS_0<0> I:En(bn+1 \ S) \ bngn+1§S52] \ FS-O(O) En(bn+1 @ S)} \
EoEsos [Ee10(Fs-0{0)bnS52 V bn) V B0 Cea
Where FE, = S, & Sy @ Op is the effective operation performed by the significand

adder. Ss9 = a5 P bso and S5 = as1 D bsy are the local sums of the two LSBs of the
adder.” Because C., and F's_0(0) arrive late, we rearrange the above equation as:

*In [10], there is a redundancy in the logic equation. But this would not significantly change the picture.
®In [9], the MSB is numbered as bit 52. Here, it is numbered as bit 0.
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CGRS = EOESO9E510 En \%
Cea [F0552 (bn Vbpy1 VsV 551) V EoE09 ESIO] V Cea [Fobn(bn-}—l VsV 552)] Vv

FS_0<0> I:EoEsog (En \ bngn+1§552) \ EoEsogEslobnS52] \ FS_0<0> I:EOESO9bn(En+1 \ g):l

The above equation is of the form

Cars = (A) V Ceu(B) V Cet (C) V Fs 0{0) (D) V Fs_0{0)(F)

where L
A = EOESOQESIOb’rL
B = F,S59(by, Vb1 VsV Ss1)V E,Es9Fs10
C = FEuby(bpy1 VsV Ss)
D = E,Fy9(by V b,b,115559) V E, Fs09F510b, S52
and

E= EOESOQbTL(ETL-}-l \ §)

which can be implemented as in Fig. 8.

-
;

A

C D E
Fs 0<0>

| GRS

Figure 8: Circuit for GRS

e Fzplanation: The Cgprs bit selects between the results computed by the significand
adder.
3.17 One’s complementor (OneCom)
o Inputs: F's, Cyy, F's09 and Fs10.
e Qutputs: Fscom.
o Function: If (Es09 A Es10 A Cca), then Fscom =~F's

e Fzplanation: OneCom conditionally performs a bit inversion on the result from the
significand adder when it is negative.
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3.18 Normalization shift (Ls55)

Inputs: Fscom, Erop, Cfine, and q.

Outputs: Fsfine

e [unctions:
Fsfine = Concatenate(F'scom, q) < Frop

FEzplanation: Lsb5 left shifts the result by Frop bits as needed. Erop may be off be
1 bit, which is later made up by C';pe.

3.19 Fine adjustment shift muxes (MuxzF'A)

o Inputs: Fsfine, F'sfine > 1, and Clpe.
e Qutputs: Fs_mls.
o Function: If Cyine, F'simls = Fsfine > 1 else F's_mls = F'sfine.

FEzplanation: MuxF A selects between the unshifted and shifted version of Fsfine,
depending on whether the most significant bit of F’s fine is zero.

3.20 Final result selection muxes (Muz53fto)
o Inputs: F's_ors, I’s, Fs_ols, Fs_mls, ORS, NXS, OLS, and MLS.

o Qutputs: Iy.

o [Function:
Case ORS, Fy = F's_ors
Case NXS, Iy =1I's
Case OLS, Iy = F's_ols
Case MLS, Fy = Fs_mls

e Fzplanation: These muxes selects among the right shifted, no shifted, left shifted by
1 bit, and left shifted by many bits version of F's.

4 Simulation

We have developed a functional simulator to verify the addition and rounding algorithms.
This functional simulator works at both algorithmic and gate levels. It has proven to be
useful in developing the algorithm and in studying the design options.

Fig. 4 shows how simulation is performed. For functional correctness, a random number
generator is used to create two number streams, which are coverted into bit vectors and
then fed into the simulator. Independently, the numbers are also passed to the floating-
point hardware on the host machine to perform the same operation. The simulated and
the computed results are then compared. In the simulator, each component is the adder is
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described by its logic equation. This allows the simulator to verify not only the algorithm
but also the hardware implementation. To simulate other rounding modes, the control
register for the rounding mode is set accordingly.

Smulator Inputs

l

Random Num. Gen.

FP Unit on Host Machine Smulation

Compare

Figure 9: Functional Simulation of the SNAP FP adder

5 Implementation

The adder is implemented using the HP CMOS26 1pym process with 3 layer metals. The
third layer metal is only used for power and ground in the current implementation. The
adder is fully static and laid out in a standard cell fashion without compaction.

5.1 Area Estimate

The area of the whole FP adder occupies 14.2mm?. Table 4 is the breakdown of the area
consumed by each component. In the table, the muxes and the buffers items are the total
area consumed by the muxes and buffers in the adder. Buffers within the components are
not included. These external muxes and buffers can be considered as the cost of decision
making and communications. In relation to the table, several observations can be made.
First, wires connecting the components, power and ground, and wasted area occupy as much
as 45% of the adder area. Second, LOP consumes roughly the same area as the significand
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Table 4: Breakdown of area consumption

Component X xYum? Kum? Percent
Exponent adder 592x459 272 2
Swapper 2150x142 921 6.6
Alignment shifter 2952x282 833 6
Normalization shifter 2952x282 833 6
Shift decoders 423x170 72 0.5
Sticky bit logic 2172x424 921 6.6
Significand adder 3089x450 1390 10
LOP 3000x430 1290 10
One’s Complementor 3000x71 213 1.5
Round Logic 212x208 44 0.3
Sign logic 92x120 11 0.01
Exponent adjust logic  592x58 34 0.2
Exponent adjust adder 592x459 272 2
Muxes 225 1.6
Buffers 3276 2.3
Total 7700 55

adder. Third, the area consumed by the rounding logic is negligible. Fourth, sticky bit
computation required to round for the IEEE standard consumed as much area as a shifter.
Fifth, the significand adder consumes the most area in the whole FP adder.

5.2 Delay Estimate

Table 5 lists the delay in the critical paths. In the SA path, FxpAdd computes the absolute
magnitude of the exponent difference, which is then decoded (Dec) to drive the alignment
shifter. The FazpAdd delay includes selecting the proper result to obtain absolute value.
The output then goes through a 3-1 mux, which also performs inversion if needed. The
delay for computing the multiple results in the significand adder is 3.7ns. The round logic
takes 3.6ns, which includes delay for signals travelling from the MSB to the round logic
and delay for driving the final selection muxes. Finally, The result is buffered to drive
the final selection mux. One’s complementation is not needed in this path. In the current
implementation, the round logic is placed on the LSB side of the significand adder. By
placing the round logic on the MSB side, the signal travelling delay, about 1ns, can be
saved. The final result selection muxes should not have been counted as part of the round
delay because this delay is needed anyway to normalize the result before rounding had a
more conventional rounding algorithm been used.

In the AS path, we need to compute the sign of the result of the exponent subtraction

23



Table 5: Simulated Delay

SA Path AS Path
Path ns Path 1 ns Path 2 ns
ExpAdd 3.6 | ExpAdd.Cexp 2.6 | Same 2.6
Dec 1.2 | Swapper + buffer 2.0 | Same 2.0
Alignment 1.6 | 3-1 mux 0.6 | Same 0.6
3-1 mux + buffer 0.8 LOP 6.5 ComAdd + Round | 7.3
Significand add 3.7 | Dec 1.2 | One’s Complement | 0.8
Round logic 3.6 | Normalize (Control) | 1.6 | Normalize (Data) | 1.5
One’s Complement / buffer | 0.8 | Fine Adjust 1.4 | Same 1.4
4-1 mux 4+ buffer 1.0 4-1 mux + buffer 1.0 Same 1.0
Total 16.3 16.9 17.2

and swap the significands if needed. The result may be negative when the exponents are
equal. The output of the swapper then goes to the 3-1 mux. At this point, we need to
examine two paths to determine the critical path. The first path is LOP plus normalization
shift and the second is significand add, round, and one’s complement. As shown in the
table, the latter turns out to be worse, becoming the critical path of the whole adder. After
one’s complement, the result result is selected.

Without LOP, the AS Path 2 is worse because two more operations are needed for
normalization. The first operation is leading one detection (LOD)® on the result from
the one’s complementor. The second is encoding, whose result is then used to drive the
normalization shifter.” On the positive side, however, we no longer need a fine adjustment
step for a 1.4ns saving. The critical path would then have been 22.3ns®; hence, LOP is
important for high-speed I'P adders.

The worst case delay shown in Table 5 does not include other rounding modes. Round to
infinity requires computing up to 3 outcomes in parallel in the significand adder, requiring
a row of 3-2 counters as shown in [9]. Assuming a 1.2ns delay for a 3-2 counter, the worst
case delay for an adder that performs all rounding modes is roughly 18.5ns.

6 Modification for Single-Precision Operation

For machines like the IBM RS/6000, single-precision is not supported; all numbers are
treated as double precision during computation. For others, however, direct support for

510D requires a priority encoder.

"A possible optimization is to merge the encoder logic and the decoder in the shifter.

sDelay = TPGth 2+ TLOD + Tencoding + Tnormalize(control) - Tnormalize(data) - TFine_ad]ust =172 +2.8+
24+428—-15—-1.4=223ns
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single-precision operations is required. In this section, we describe the changes for single
precision operations.
The changes needed are:

e The b,, b,4+1, and s bits have to be computed separately. This is relatively easy
because we already have a 53-bit shifters in place. We have

b, = Fin(24)

and

s = OR(Fin(26 : 52))

We have chosen to observe Fin, rather than F'm, to compute these bits. This is for
conversion from double precision to single. To perform such an operation, we have
to subtract the operand from 1, set the exponents equal, force the MSB to be 1, and
select the result to be single. It will be rounded properly because the lower order bits
of F'in are observed by the adder. This is also the reason why we want to observe up
to the 52th bit to determine the sticky bit.

Extra logic must be provided to select between the b,,, b,4+1, and s bits for double
precision and for single operations.

e The LSBs of F'1 into the significand adder must be forced to 1 so that when computing
A+ B+ 1, the 1 will ripple into the correct place. That is,

F1(24:52) =1

e The LSBs of Fin into the significand adder must be forced to zero to avoid generating
a false carry into the MSBs.
Fin(24:52) =0

e The LSBs of F's, the result from the significand adder must be forced to zero to avoid
shifting invalid bits into the top 23 bits during normalization.

Fs(24:52)=0

All of these changes are relatively minor and have a negligible speed impact on the
adder.

In principle, it is possible to modify the adder to perform operation on two double
precision operands and returns a single-precision result. This, however, will come at the
expense of delay. Most of the architectures, therefore, do not support such an instruction.
Instead, it is performed as a double precision operation and the result is then converted
into single precision. Fortunately, such a need for conversion occurs relatively infrequently.
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7 Pipelining the Adder

To increase throughput, the current adder can be pipelined at 3 stages. For the SA path,
we do exponent subtract and shift in the first cycle, add in the second cycle, and select the
final result in the last cycle. For the AS path, we do exponent subtract in the first cycle,
add in the second, then normalize and select the final result in the last cycle. Only one
adder is needed in this design. The cycle time in this pipelining scheme is likely determined
by the adder stage.

To reduce latency, the adder can be pipelined at 2-stage. We have to use another
significand adder in the AS path because the two paths use the adder in different stages of
the pipeline, creating a resource conflict. Fig. 7 shows a possible 2-stage implementation.
In this 2-stage implementation, the AS path can be slightly sped up because the operands
can be swapped simply by examining the least 2 significant bits of the exponents. These
bits may be different for single and double-precision operations, however.

8 Summary

In this paper, we have presented the design and implementation of a high-speed floating-
point adder used in the Stanford Nanosecond Arithmetic Processor. The SNAP FP adder
uses a state of the art rounding method to reduce the number of operations in the shift-add
critical path and uses leading one prediction and a fast complementation technique to speed
up the add-shift path. The key in the rounding method is to compute multiple results and
select the correct one based on the rounding bits. These multiple results have also been used
to perform fast complementation when the result is negative in the SNAP adder. Leading
one prediction — LOP —is a mothed of predicting the amount of normalization shift needed
to align a result before its arrival. This allows LOP and significand addition to be performed
in parallel, rather than in serial. SNAP uses a LOP circuit that is similar in operation to
that of the RS/6000. But we believe that our LOP circuit consumes less hardware.

The SNAP FP adder has been implemented in the HP CMOS26 1um process with triple
layer metals. The third metal layer is used only for ground and power. The adder is fully
static and consumes less than 1 watt at a nominal delay of less than 20ns. The adder
is laid out in standard cells using Mantor the GDT tool from Mantor Graphics without

compaction; the size of the adder is 14.5 mm?.
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