The S/390 G5 Floating Point Unit Supporting Hex and Binary
Architectures

Eric M. Schwarz, Ronald M. Smith, Christopher A. Krygowski
S/390 Microprocessor Development
IBM System 390 Division
522 South Rd., MS:P310
Poughkeepsie, NY 12601

Abstract

The first high performance floating point unit to sup-
port both IBM 360 hezadecimal based floating point ar-
chitecture and the IEEE 754 Standard binary floating
point architecture is described. The S/890 G5 floating
point unit supports the new S/890 architecture which
includes hezadecimal based short, long, and extended
precision formats and IEEE 754 standard single, dou-
ble, and quad formats. This floating point unit is part
of the microprocessor chip on the S/390 G5 mainframe
computer introduced in 1998 and generally available at
500 MHz speeds. The S/390 G5 represents the current
state of the art in CISC processor design. This paper
describes the S/890 architecture enhancements, the in-
ternal format of the FPU, and the modifications to the
FPU dataflow.

1. Introduction

S/390 mainframes use a proprietary floating point
format dating back to the 360 architecture introduced
in the 1960s[1]. The format has hexadecimal exponents
and hex digit normalization. It was created with the
strong influence of early hardware limitations. In the
SSI technology of 1960s, shifting the mantissa was a
major operation. The 360 architecture reduces the nec-
essary shifting by defining normalization to a hex digit
boundary rather than a binary bit boundary. The ex-
ponent can be represented with two less bits than a bi-
nary based format which allows the sign and exponent
to fit into one byte. The resulting mantissa format can
have up to 3 leading zero bits in a normalized number.
Floating point addition is defined to perform alignment
based on exponents regardless of normalization, and to
maintain one hex guard digit during the calculation

0-7695-0116-8/99 $10.00 © 1999 IEEE

of an intermediate result. Hexadecimal floating point
architecture is designed to allow simple and fast imple-
mentations.

The IEEE 754 standard was developed in 1985 [2]
to standardize computation among several manufac-
turers and to enforce a mathematically “pure” result.
The format is very efficient and numbers are binary
normalized with the leading one implied rather than
explicitly represented. The range of exponents varies
between formats and allows a larger range than the hex
format. The IEEE 754 standard has been adopted al-
most universally in the PC, workstation, and midrange
computer markets. S/390 mainframes have been using
an incompatible floating point format until 1998.

To expand the markets in which S/390 mainframes
compete, the architecture has been expanded to inte-
grate the two floating point architectures. Both the
old hexadecimal based architecture and the relatively
new IEEE 754 binary based architecture are supported.
The first machine to implement this enhancement is
the $/390 G5 processor announced May 7, 1998 and
generally available in September 1998. The implemen-
tation provides compatibility to both architectures but
is optimized to hexadecimal architecture.

1.1. Architecture

This section describes the architectural features of
the new ESA/390 Binary Floating Point facility[5].
Formats, registers, instructions, rounding modes, and
exceptions are described.

1.1.1 Formats

The ESA /390 architecture defines 6 floating point for-
mats as described in Table 1. The S/390 formats are
based on the S/360 architecture developed in the 1960s.
To distinguish between the two formats now available

Format Sign (8) | Characteristic(c) | Mantissa(m) | Total Width
bits | bits bias bits bits

Hex Short 1 7 64 24 32

Hex Long 1 7 64 56 64

Hex Extended 1 7 64 112 128

Binary Short 1 8 127 24 32

Binary Long 1 11 1023 53 64

Binary Extended 1 15 16383 113 128

Table 1. Supported Formats

in S/390 the old hexadecimal format is referred to as
HFP and the binary format is referred to as BFP. An By Brel Bye? Bried
HFP number can be expressed by the following equa- UMMM OO0 OFEE 0 izouxy o0 Y
tion: Masks Flags DXC

Xhe:c = (—I)X' * OXm * 16Xcha—bias

where Xj.; is value of the hex format number, X,
is the sign bit, X,, is the mantissa which is less than
1.0, Xch, is the characteristic (hex architected for-
mat), and the bias is fixed at 64. There are 3 HFP
formats. They all have 7 bit characteristics, but the
size of the mantissa varies from 24 to 112 bits. The ex-
tended format is equivalent to two 64 bit long format
numbers whose second characteristic is 14 less than the
first characteristic. This is similar to a double-double
format with contiguous fraction bits.

A normalized BFP number can be expressed by the
following equation: :

Xbina.ry = (—l)x' *1.X,, * 2xcba—bia5

where Xyinsry is value of the binary format num-
ber, and X¢sq is the characteristic (binary architected
format). S/390 defines BFP short and long formats
which are equivalent to the IEEE 754 single and dou-
ble formats. Additionally, a binary extended format is
defined which is equivalent to IEEE 754 type quad for-
mat adopted by several manufactures such as Hewlett-
Packard’s PA-RISC architecture [3], SUN Microsys-
tems’s SPARC, and DEC’s Alpha[4]. The Alpha archi-
tecture also supports two floating point architectures
VAX and IEEE though both are binary based. All
BFP formats have an implied one for normalized num-
bers and allow denormalized numbers.

1.1.2 Registers

With the installation of this new S/390 architecture
the floating point register file expands from 4 to 16 64-
bit registers. Recent S/390 machines were able to cope

259

Figure 1. Floating Point Control Register

with this limitation by optimizing the pipeline for RX
(register and memory) type instructions.

One control register is defined and is called the
Floating Point Control register (FPC) and is shown
in Figure 1. It is 4 bytes in length and contains the
mask bits in byte 0, flag bits in byte 1, data exception
code (DXC) in byte 2, and the rounding mode in byte
3. Mask and flag bits are available for invalid operation
(i, bit 0), division by zero (z, bit 1), overflow (o, bit 2),
underflow (u, bit 3), and inexact (x, bit 4). The other
bits are reserved. The data exception code is similar
for bits 0 to 4 but contains a bit 5 (y) which repre-
sents if an inexact result is incremented in magnitude.
The rounding mode is stored in byte 3, bits 6 and 7. A
rounding mode of “00” is round to nearest as defined by
the IEEE 754 standard and sometimes called round to
nearest even, “01” is round toward zero, “10” is round
toward positive infinity, and “11” is round toward neg-
ative infinity. The FPC rounding mode determines the
direction of rounding for numbers that can’t be ex-
actly machine represented. A few instructions include
a M3 or M4 field in the instruction text which can over-
ride the current FPC specified rounding mode. This
field can specify the use of the current rounding mode,
force any of the 4 rounding modes specified above, or
force biased round to nearest (sometimes called simple
rounding). Thus, 5 rounding modes are supported in
hardware.

1.1.3 Instructions

The Binary Floating Point facility adds a significant
number of opcodes to S/390 architecture. A signifi-

Instruction Type S L X
Add / Subtract H/B | H/B H/B
Add / Sub. Unnormalized H H -
Compare H/B | H/B | H/B*
Compare and Signal* B B B
Convert from Fixed* H/B | H/B H/B
Convert to Fixed* H/B | H/B H/B
Divide H/B | H/B H/B
Divide to Integer® B B -
Halve H H -
Load and Test H/B | H/B | H/B*
Load Complement H/B | H/B | H/B*
Load FP Integer* H/B | H/B H/B
Load Lengthened™ H/B | H/B H/B
Load Negative H/B | H/B | H/B*
Load Positive H/B | H/B | H/B*
Load Rounded H/B | H/B | H/B*
Multiply H/B | H/B | H/B*
Multiply and Add/Sub* B B -
Square Root H/B | H/B | H/B*
Test Data Class* B B
SUPPORT

Convert BFP to HFP* X X -
Convert HFP to BFP* X X -
Load RR X X X*
Load RX X X -
Load Zero* X X X
Store X X X
CONTROL

Extract FPC* - - -
Load FPC* - - .
Set FPC* - - -
Set Rounding Mode* - - -
Store FPC* - - -

Table 2. Instruction Types

cant issue in the overall design was whether a modal
approach could be used for switching between HFP and
BFP. The overriding factor was that multiple behaviors
for the same opcodes caused significant compatibility
and linkage problems for both the operating system
and application software, so the modal behavior de-
sign was dropped in favor of separate new opcodes for
the BFP operations. There are 54 previously defined
hex instructions, but the new Binary Floating Point fa-
cility adds 121 opcodes which consist of 8 new support
instructions, 26 new hex instructions, and 87 binary
instructions.

Table 2 shows a list of all the instruction types now
available in S/390 architecture with the Binary Float-
ing Point facility installed. The instructions are sepa-
rated into instructions that apply to both HFP and
BFP, support instructions, and control instructions.
The table describes whether instructions are available
in hex format (H), binary format (B), or both (H/B),
and for short (S), long (L), or extended (X) precision
formats. An asterix (*) denotes a new instruction to
the architecture.

260

1.1.4 Exceptions

IEEE 754 standard defined traps are implemented as
S/390 data exceptions. Each type of trap has a sepa-
rate data exception code (DXC). All 5 types of excep-
tions as described in the IEEE 754 standard, Section 7
[2] are implemented.

Underflow exception uses the same two rules for de-
tection as the RS/6000: tininess is detected prior to
rounding and loss of accuracy is determined by the ex-
actness of the result.

Overflow and underflow exceptions for binary for-
mat conversion to a smaller format cause strange but
defined results in compliance to sections 7.3 and 7.4 of
the IEEE 754 Standard[2]. The standard dictates that
the mantissa be rounded to the target format on a trap.
The exponent could wrap multiple times in the target
format, so it is maintained in the source format. But
even in the source format it could wrap the exponent
due to rounding the mantissa. Therefore the exponent
is wrapped with a fixed bias adjust and kept in the
source format with an exponent in the target and the
resulting representation is to the length of source for-
mat. This is accomplished all in hardware on the S/390
G5 FPU.

There are also two other new S/390 data exception
codes for the binary floating point facility. They are
related to a new control register bit (CR0.13) called
the Additional Floating Point (AFP) register control
bit. This facility provides a means for disabling the new
function even though on the G5 machine this hardware
is always considered to be installed.

1.2. Software Support

As of September 1998 05/3907M Version 2 Release
6 supports binary floating point. There has been a
world wide effort at pulling together operating system
support, linkage editors, run time libraries, compilers,
and applications development for this release. Some
of the items include making operating system aware
of the additional floating point registers to save and
restore on context switches and be able to link the
correct libraries together for HFP or BFP. User fea-
tures include a C/C++ compiler and a C Run Time
Library supporting BFP. Also, Java is becoming an in-
dustry standard which requires underlying IEEE 754
floating point support. Java is supported by a Just-In-
Time compiler. In terms of applications support, Lotus
Notes and DB2 are updated to utilize this hardware.

1.3. Hardware/Technology

The G5 microprocessor uses the IBM CMOS6X
technology which has a device size of 0.25 microns
drawn and 0.15 microns effective length (nFET)[6].
There are 6 metal layers and the supply voltage is 2.0
volts. The microprocessor chip is 14.6 mm by 14.7 mm
and contains 25 million transistors. The chip operates
at 25 Watts. The product ship frequency is 500 MHz
but the chip has been tested at up to 600 MHz in a
laboratory environment{9]. The processor has a per-
formance of 150 S/390 MIPS ! for uni-processor and
1040 S/390 MIPS for a 10-way processor which is the
highest in the industry in 1998 including both CMOS

and bipolar mainframes. This is over twice the per- .

formance of the S/390 G4 microprocessor (64 and 450
MIPS) from 1997. The FPU is replicated on the mi-
croprocessor chip for error tolerance and takes up ap-
proximately 10 percent of the total chip area. The G5
FPU is approximately 20% larger than the G4 FPU
prior to technology scaling to accommodate the BFP
architecture.

1.4. Optimization

The S/390 G5 processor operates in a commercial
environment rather than in a scientific environment.
Therefore, tradeoffs in area and timing over floating
point performance have been made. The current ex-
pected workload of the machine is traditional applica-
tions for hex floating point but binary floating point
applications are expected to grow rapidly. With this
in consideration the G5 FPU is optimized for HFP but
with hardware implementation and full functionality
of BFP. Most instructions including extended formats
and special cases are implemented in hardware. Most
short and long operations are pipelined and extended
precision instructions are non-pipelined. The converts
to/from fixed, divide to integer, test data class, and
the control instructions are the few floating point in-
structions implemented in low level software called mil-
licode.

The G5 processor is based on the G4 proces-
sor design and was developed by the same team.
The dataflow could not be altered extensively given
the constraints of the schedule of this follow-on ma-
chine. Thus, the major dataflow functions remain the
same such as the multiplier[7] and most of the basic
dataflow(8]. Three binary formats and twice as many
instructions were added to the design with minor mod-
ifications. The rest of this paper shows how this sig-

15/390 MIPS are determined by a geometric average of many
commercial workloads.

261

nificant architectural revision is adapted into the G4
dataflow to provide full functionality of the BFP ar-
chitecture with reasonable performance and minimal
changes.

2. Internal Architecture

The six floating point formats are supported in the
floating point unit by using one internal format. The
input operands are transformed into this internal for-
mat and all computation is performed on this format
and then the intermediate result is transformed into
the output architected format. To optimize for the
HFP architecture the internal format is chosen to be a
hex based format. This makes the conversion between
the HFP formats and the internal format trivial, but
slightly hinders the BFP format.

The internal format is hexadecimal based with a 14
bit characteristic and a bias of 8192 as expressed by
the following:

Xintcrna,l = (—l)x' *0.X,, x 16ch¢—8192

where X;pternql is value of the internal format num-
ber, and Xcp; is the characteristic (hex internal for-
mat). The hex architected 7 bit characteristic is easily
supported by the 14 bit format. BFP format uses at
most 15 bits of characteristic but with a binary expo-
nentiation. A direct comparison between binary and
hex exponentiation is that 2 less bits are required for
hex as shown by the following relation:

24X - 16X

since 4X contains two more bits than X.

The 1997 S/390 G4 FPU actually has a 14 bit expo-
nent dataflow which was implemented in preparation
for the G5 machine and the addition of BFP architec-
ture. In the G4 FPU the additional exponent bits were
not used since it only supported HFP architecture, but
this enabled the dataflow stack bit width to remain
constant between machines.

3. Dataflow Modifications

The S/390 G4 and G5 FPUs have a 56 bit fraction
dataflow with a floating point multiplier which uses a
radix-8 algorithm(7]. There is a 3X adder and Booth
decode in the first cycle of execution, Booth multiplex-
ing and a 19 to 2 counter tree in the second cycle, and
a 120 bit adder in the third cycle. The FPUs also have
a floating point addition pipeline which shares the 120
bit adder with the multiplier. Alignment and comple-
mentation is computed in the first cycle, the 120 bit

GS5 Floating Point Unit

FPU_A_BUS
o U_B_BUS DIV/SQRT
64 Tables
6 7
10
FPU_C_BUS b g
2 FPU A Reg] PU B Reg] -] | To DIVSQRT. Tables......
e
= 7
MAL Mux AAL Mux ass BL Mu:
FMTCONV. | (0 _tsg sent” FMT CONY added for BFP
EX 1 | . § TN
ADD 1 Compare & Swaj Booth
MULT 1 \3x Adder / ‘—f—r—-"-’ sl
Aligner & Xor
66h
-------------------- [Deeose Rep]
EX 2
MULT2
EX 3
ADD 2
MULT3
64b
EX 4
ADD 3
| FC2 Reg
o Rounder added for BFP
68y, 7 1 l—l
- |
' FC3 Reg if--dieemeemrmrimsniscnecens
6|

Figure 2. G5 FPU Fraction Dataflow

addition in the second cycle, and post normalization
in the third cycle. Most HFP multiplication and addi-
tions have a latency of 3 cycles and have a throughput
of 1 every cycle.

The G5 FPU fraction dataflow is shown in Fig-
ure 2. The G5 adds format converters below the A
and B registers for converting binary architected for-
mat operands into hex internal format and detecting
special input numbers. Also, sticky bit detectors are
added to the aligner and normalizer. And, a rounder /
format converter is added at the bottom of the pipeline
to complete the IEEE rounding and to convert back to
binary architected format. Each of these units will be
described in more detail.

3.1. Conversion from Hex Architected to
Hex Internal and Back

The conversion between hex architected and hex in-
ternal format is trivial. The fraction and sign bits are
the same in the two formats. So, only the characteristic

262

is converted. The 7 bit characteristic in the architected
format is transformed into a 14 bit characteristic by
something similar to sign extension as shown by the
following:

16(Xo;.,"—8192)

Xcons — 8192
Xcnhi

16(Xa;., —-64)

Xcha — 64
Xoha + 283 -2°

Note that 212 — 26 represents a string of ones from the
next to most significant bit of the 14 bit internal format
to the most significant bit of the architected character-
istic. This constant addition does not effect the low
6 bits of the architected characteristic and results in
an extension of the most significant bit followed by 7
instances of its complement as shown by the following:

Xcohn: 0000000CoC1C2C3C4C5C6s +

01111111000000,

CoCo Co Co Cp Co Co CoC1C2C3C1CsC6

The internal format is chosen specifically to optimize
the transformation of hex input operands and this sign
extension of the characteristic is performed while load-
ing the operands into the A and B input registers. The
internal bias is a power of two (i.e. 213 = 8192) which is
hex-like versus the binary format bias which is a power
of two minus one (i.e. 215 — 1 = 16383).

After the intermediate result in the hex internal for-
mat is calculated it is transformed back into the ar-
chitected format so it can be written into the register
file. The register file contains the numbers in archi-
tected format. The transformation from hex internal
format to hex architected format is simply the reverse
of the sign extension. The least significant 6 bits are
preserved and the 7th bit is inverted which is preferred
over transmitting the most significant bit of the inter-
nal characteristic. If the characteristic is within the ex-
ponent range of the architected format the most signifi-
cant bits are guaranteed to be CoCo Co Co Co Co Co Co.
Hex architecture dictates on overflow and underflow
exception that the characteristic wrap from 127 to 0
or 0 to 127. The internal characteristic is in a wider
precision and this is automatically what is occuring to
bit 7. So, inverting bit 7 for either the normal or the
exception case provides the most significant bit of char-
acteristic.

Note both format conversion to and from hex ar-
chitected requires very little hardware and computa-
tion, so it is accomplished while loading or unloading
operands from the FPU.

3.2. Conversion from Binary Architected to
Hex Internal

The conversion from binary architected format to
hex internal is a little more complex since both the frac-
tion and characteristic need to be modified. A trans-
formation of exponents between the two formats is as
simple as dividing the base two exponent by 4 (shifting
by 2) and applying the residual to a binary shift of the
fraction. The resulting fraction requires 53 bits plus up
to 3 bits of leading zeros to represent in a hex normal-
ized format which is exactly 56 bits, the size of the hex
long fraction. The following shows this transformation
if exponents are considered rather than characteristics
and their biases:

1.X, *2°%28 = (0.0001[|52bits) « 16(F>>2)+1
LXn+2' 428 = (0.001]|52bits||0) * 16(F>>2)+1
1.Xm 22528 = (0.01||52bits||00) x 16(F>>2)+1

1LXm*2242F = (0.1)|52bits]|000) x 16(F>>2)+1

where E is divisible by 4.

The conversion is more difficult since the biases dif-
fer for hex and binary. The following shows the formu-
lation where » = Cba mod 4 and the binary bias is
represented by 2V — 1.

1.X,, # 2Cta=bas . pheg frac « 16Chi-8192

= 1.X,, » 2(Cte-(2"-1)
= 1.X,n*2% 9(Cba-2")
= 1.X.. * 2% 16(5=-2""48102)-8102
. m

= 1.X,*2%2 % 16(1%=1 -2V 18192)-8192

= (0.001X,, x2") * 16(LS= 14142 2N =) _g192
This function of complementing the most significant
bit and extending it to bit 0 of the 14 bit notation
with the most significant bit not complemented (true)

is defined to be the function SE. Below is a table for
these conversions:

1.X *2Cba.--bc'a..l
Am

For r=3, = (0.0001||52bits) + 16{57(Cte>>2)+2)-8102
For r=0, = (0.001][52bits||0) » 16(SB(Cta>>2)+1)-8102
For r=1, = (0.01]|52bits||00) « 16(5E(Cta>>2)+1)-8192
For r=2 = (0.1”521,“3”000)*16(5E(Cba.>>2)+1)-—8192

To accomplish this transformation two format con-
verters are placed next to A and B register. The out-
puts of the A and B registers feed both the normal

dataflow and the format converters and they output
their results back to these registers. The format con-
verters consist of a series of multiplexors in the fraction
dataflow and multiplexors and an adder in the expo-
nent dataflow. In the fraction dataflow first the format
is multiplexed to determine which bits are exponent
bits and which bits are the fraction. The multiple frac-
tion formats are multiplexed and the implied one is
added if the exponent is not all zeros. The fraction is
then shifted depending on the least significant two bits
of exponent by another multiplexor. The output frac-
tion is fed back to the input fraction register and also
to a special number detector which compares the frac-
tion to zero. In the exponent format converter the first
multiplexor performs a length conversion and sign ex-
tension function. Then the least significant two bits are
used to select a constant of 1 or 2. Then the constant
is added to the sign extended exponent and is driven
to the exponent input register. At the same time the
original exponent is checked to see if it is all ones or
zeros. The format converters take one cycle to execute
and cause a stall of the next instruction issuing but do
not cause stalls in prior instructions.

3.3. Conversion from Hex Internal to Bi-
nary Architected

The conversion back to binary from hex internal is
performed in the rounder / format convert unit and
involves the following formulation:

0.hfrac+16CH-8192 1 x 4 9Cba—?’
0.hfrac = O0.hfrac*2" 27"
0.hfrac = 1.X,*x27T
0.hfrac 16CHi—8192

= 1.X, %277 x 24»C’hi—4o8192
1. X, % 277 % 24Chi=2% | o2V -1) , 9—(2V-1)

—r _ o4xChi-2'%42N 1 — (2V¥ -1
1. X, 277 %2

1.X,. x o4*Chi-2"%42V—(r41) — ¥’
. m

Cba = 4*Chi——215+2N—(r+1)

Let RSE(A) = A-2" 42V
Cba = RSE(4*Chi—(r+1))

RSE function is basically a reverse sign extension
function. Exponents within the range of representable
numbers are guaranteed to have Cp followed by Cy for
the bit locations from the most significant characteris-
tic position of the internal format to the bit weighted
by 2¥. Thus the reverse sign extension can easily be

accomplished by just wiring the most significant bit of
the hex internal characteristic to the most significant
bit of the binary architected format. Or the subtrac-
tor width can be minimized to the target characteristic
length and the most significant bit can be inverted since
it will be one of Cy bits. Here is the mapping between
formats for different binary normalizations within the
hex format, or stated another way, various values of r.

(0.0001||Xm) + 16CHi—8192 1.X,. % 2RSE(4tChi—5)—b'

(0.001]| X) 16°H 2122
(0.01]] X) + 1658192
(0.1]| X m) * 16Chi—8192

1.X,. % 255E(4.cm‘-4)-b’

1.X. *2HSE(4~Chi—3)—b’
~Am

R

1.X. *2RSE(4~CM—2)—b'
Am

3.4. Rounder

The rounder is also new to the FPU. It performs an
increment of the mantissa in parallel with determining
whether the result should be truncated or incremented.
The rounding direction is dependent on the least sig-
nificant digit, the guard digit, the aligner’s sticky bit,
the normalizer’s sticky bit, and a sticky bit within the
least significant hex digit determined in the rounder
cycle. After the incremented or truncated result is se-
lected, it is binary aligned and the most significant one
is chopped off. During this mantissa rounding, the ex-
ponent is converted as shown in the previous section.
The exponent is also calculated with an increment of
one which is selected if the mantissa rounding results
in an exponent increment.

3.5. Other BFP hardware

The major hardware change is to add format con-
verters on the input and output and a rounder so that
binary data can be treated as though it is in hex in-
ternal format. There are two other functions that are
needed: sticky bit detection, and special number han-
dling.

Sticky bit detection is needed so that it can be de-
termined whether there are any bits that have been
shifted out of the intermediate result. The intermedi-
ate result is maintained with several guard bits but this
is not enough for the IEEE 754 standard. It must be

known how the intermediate result differs from the in-"

finitely precise result. The only places in the G5 FPU
dataflow where precision can be lost are in the aligner
and the normalizer. For both cases the sticky bit is
calculated in parallel with the shifting by calculating
all the possible sticky bit outcomes and selecting be-
tween these outcomes. Shifting is performed to a hex

264

boundary so there are only 15 possible shifts for the
aligner (long) and 29 possible shifts (extended) for the
normalizer. The sticky bit is maintained in the pipeline
to a hex digit boundary until the rounder.

A special number handler is also needed and is part
of the input format converts, the control logic, and the
rounder. The input format converts detect if a spe-
cial number is present. Also the datafiow can signal to
controls that underflow or overflow has occurred that
may result in a zero or infinite result. The control logic
decides if a special number should be forced. If one is
to be forced, the operation is continued until the last
cycle of execution, the rounder cycle, and this is where
the special number is created. This is true for infini-
ties and zeros but denormalized inputs are handled in
the datafiow as normal numbers; the format converter
automatically suppresses the implied one and the ex-
ponent is forced to a fixed value. Also, the presence of
a NaN input changes the chosen operation, such as a
multiply or add, into a load operation. The result when
an input operand is a NaN is the NaN itself (except for
possibly flipping a bit which changes a signaling NaN
to a quiet NaN). The creation of a new NaN (i.e. 0
divided by 0) is also performed in the rounder.

Creation of special numbers is straightforward for
zeros and infinities and even NaNs. But creating a de-
normalized result is difficult due to the late detection.
For pipelined instructions the detection is performed
partially in the normalizer and has a final resolution in
the rounder stage which is the last stage in the pipeline.
The intermediate result at this stage is normalized and
must be right shifted back to the fixed denormal ex-
ponent. This requires feeding the intermediate value
back through the pipeline to the normalization stage.
If there are other instructions in the pipeline a seri-
alization exception is taken and the instruction is re-
issued in unoverlapped mode. If there are no other
instructions in the pipeline the normalized intermedi-
ate result (no prior rounding) is wrapped to the top of
the pipeline and right shifted and rounded.

Thus, to support binary floating point on a hex
dataflow, two format converters are added below the
input registers, a rounder / format convert is added
above the output register, stickyness is detected on the
aligner and normalizer, and a special number handler

is added.

4. Performance

As mentioned earlier, the dataflow is optimized for
hex instructions but with compatibility and reasonable
performance for binary instructions. Table 3 shows the
performance of a few instructions where L indicates la-

Execution
Instruction Format T
Load

Load
Add/Subtract
Add/Subtract
Add/Subtract
Add/Subtract
Add/Subtract
Add/Subtract
Multiply
Multiply
Multiply
Multiply
Multiply
Maultiply
Multiply /Add
Multiply/Add

N
N

o
[=]

(]
=]

o= w Wl o g w wl i
(SR [T IR N U PR P

W W W W)T i in) W i
[R7 PR SR PYR S 7 YN N7 EN o R [l

Table 3. Performance of Instructions

tency and T throughput. In general hex short and long
data can be pipelined 1 instruction per cycle and bi-
nary short and long data can be input 1 instruction
every 2 cycles. The limitation for binary is the result
of optimizing the wiring of A and B input data busses
and placing the input format converters without an
input staging register. Instead A and B registers are
used two cycles in a row, creating a stall following bi-
nary instructions. Most hex short and long instructions
have a latency of 3 cycles but binary short and long in-
structions for addition take 2 additional cycles for in-
put format conversion and rounding / output format
conversion. Binary multiply short and long requires 1
more cycle for a total of 6 cycles, since it requires a
cycle through the normalizer to do sticky bit detection
while hex multiply normally does not use the normal-
izer. Binary multiply/add has a latency of 13 cycles
for short and 18 cycles for long which is longer than
the two operations separately. In the S/390 G5 ma-
chine it is suggested this instruction be used if only
one rounding can be tolerated. To perform a long mul-
tiply/add with one rounding requires a multiply long
times long to extended followed by an extended add
followed by a load rounded from extended to long pre-
cision. The fused multiply/add instruction is faster
than these three instructions. Future implementations
of multiply /add will probably have similar performance
to the RS/6000 implementation. The current value of
this instruction is rather limited but it provides early
support of the instruction on a machine without a mul-
tiply/add datafiow.

This machine competes in commercial environments
rather than scientific. The performance is limited to 1
binary instruction every 2 cycles but the clock rate is
rather high at 500 MHz and the machine comes in a
10 way shared memory multiprocessor configuration.
The hex performance can be up to twice as high as the
binary performance but in most applications the per-

265

formance difference is less noticeable. This hardware
implementation replaces a software solution which is
either not bit for bit compatible or is extremely slow.

5. Conclusion

The S/390 G5 mainframe computer is the first pro-
cessor to implement both the traditional S/360 hex-
adecimal floating point format and the IEEE 754 bi-
nary floating point standard. We have shown the
new S/390 architecture which supports both architec-
tures, and an internal format which supports both.
The S/390 floating point architecture has dramatically
grown from 54 opcodes to 175 opcodes. The internal
format is optimized for hex floating point which is our
current market and it supports the growing market of
IEEE 754 floating point. Also, the dataflow modifica-
tions were detailed including deriving the format con-
version equations and discussing other necessary hard-
ware. The simple add-on type design enabled us to
implement a huge architecture change and still meet a
highly aggressive schedule of a follow-on machine.

Acknowledgments

The authors would like to thank the contributions of Leon
Sigal, Robert Averill, Thomas McPherson, Sean Carey, Fanchich
Yee, Barry Winter, Rick Dennis, Dave Webber, Charles Webb,
Jeff Li, Mike Mullen, and Kai-Ann Mueller.

References

[1] G. M. Amdahl, G. A. Blaauw, and J. F. P. Brooks.
“Architecture of the IBM System/360,” IBM Journal

o{ Research and Development, 8(2):87-97, April 1964.
“IEEE standard for binary floating-point arithmetic,

ANSI/IEEE Std 754-1985,” The Institute of Electrical

and Electronic Engineers, Inc., New York, Aug. 1985.
“PA-RISC 1.1 Architecture and Instruction Set Ref-

erence Manual,” available at http://www.hp.com/,

February 1994.
“Alpha Architecture Handbook Reference

Manual,” Order Number EC-QD2KB-TE, available at

http://ftp.digital.com/pub/, October 1996.
“Enterprise éystems rchitecture/390 Principles of Op-

eration,” Order No. SA22-7201-5, available through

IBM branch offices, Sept 1998.
Robert Averill et. al. “Deep submicron design tech-

niques for the 500 MHz IBM $/390 G5 custom micro-

rocessor,” In ICCD’98, Austin, TX, October 1998.
M. Scilwarz, B. Averill, and L. Siga.l. “A radix-8

CMOS S/390 multiplier,” In Proc. of 18th Symp. on

Comput. Arith., pages 2-9, Asilomar, CA, July 1997.
E. Nf] Schwarz, f %iga.l, and T. McPherson. “CMOS

floating point unit for the S/390 parallel enterpise
server G4,” IBM Journal of Research and Development,

41(4/5):475-488, July/Sept. 1997.
Timothy Slegel et. al. “IBM S/390 G5 microprocessor,”

In Hot Chips 10, Stanford, CA, August 1998.

(2]

(3]

4]

(5]

(6]

(7]

(8]

(9]

