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Abstract

Denormalized numbers are the most difficult type of
numbers to implement in floating-point units. They are
so complex that some designs have elected to handle
them in software rather than hardware. This has re-
sulted in execution times in the tens of thousands of
cycles, which has made denormalized numbers useless
to programmers. This does not have to happen. With
a small amount of additional hardware, denormalized
numbers and underflows can be handled close to the
speed of normalized numbers. This paper will summa-
rize the little known techniques for handling denormal-
ized numbers. Most of the techniques discussed have
only been discussed in filed or pending patent applica-
tions.

1. Introduction

The IEEE 754 binary floating-point standard [1]
defines a set of normalized numbers and four sets
of special numbers.
a-Numbers(NaNs), infinities, zeros, and denormalized

The special numbers are Not-

numbers which are sometimes referred to as subnor-
mals or denormals. Operations on the first three spe-
cial numbers require no computation. The only type
of special number which requires computation for an
arithmetic operation is denormals. Normalized num-
bers are represented by the following:

X = (—1)% # L.X; 2% 00

where X is the value of the normalized number, X, is
the sign bit, X is the fractional part of the significand,
X, is the exponent, and bias is the bias of the format
(127, 1023, and 16383, for single, double and quad).

Denormals are represented by the following:

X =(-1)% x0.Xp%2"7% | X, =0, X; £0
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There is no implied bit, and the exponent is not equal
to X, — bias, but instead has to be forced up by 1,
to Emin which is equal to -126, -1022, and -16382 de-
pending on the format. Typically the dataflow of a
Floating-Point Unit (FPU) is optimized for normalized
numbers since they are the most common but there
must be some mechanism to handle denormals.

There have been many variations as to how much of
the denormalization handling should be done in hard-
ware versus software. Some implementations force all
denormalized input to software while others handle
easy cases in hardware. Several SPARC implementa-
tions support gross underflow in hardware but force
other underflow cases to software[2, 3]. Some imple-
mentations take either a trap to software or stall in
hardware when a denormalized operand is detected and
transform the denormal to a normalized number with a
greater exponent range. The Motorola G4 vector unit
traps on denormal inputs and underflow results in Java
mode, while it also has a non-compliant mode where it
forces denormal inputs and results to zero. The prob-
lem with this technique is that it stalls dispatching in-
structions and does not solve all the execution issues of
denormals and underflow. This paper will present tech-
niques for handling denormal input as well as underflow
cases which require "denormalization” in hardware.

There are two obvious areas where denormals must
be handled, 1) as input to an arithmetic operation,
and 2) when an intermediate result underflows and
traps are disabled, a denormal number needs to be pro-
duced. First, architecture variations will be discussed
which affect the handling of denormals. Handling de-
normal input will be discussed in the following four
sections. Section 3 will discuss using tagging of reg-
ister files to indicate denormal input and its effect on
loads and store instructions. Section 4, 5, and 6 discuss
denormal input for the operations of addition, multi-
plication, and fused multiply-add. The following two
sections address the handling of an intermediate result



which underflows. Section 7 discusses denormalizing
an intermediate result, and Section 8 addresses how to
prevent denormalization from being needed. Section
9 presents a case study, the Power4 FPU and shows
how it combined several of these techniques to imple-
ment denormals in hardware with very little area and
keeping most of the execution in hardware.

2. Architecture Variations

The handling of denormal numbers is dependent on
both the instruction set architecture and constraints
set by the overall processor microarchitecture. The im-
portant attributes of the architecture include the dif-
ferent precisions which are supported, how they are
represented internally in the registers, and the oper-
ations which can be performed on each of these data
types.

For some architectures, all data types are con-
verted internally to the widest supported format. For
example, the Intel TA-32 architecture [4] as well as
some other architectures [5] support single, double and
double-extended formats in memory, but all data is au-
tomatically converted to the double-extended format
when loaded from memory. This 80-bit format includes
15 bits of exponent and 64 bits of significand. Single
and double denormals are normalized during this con-
version. Similarly, the PowerPC architecture [6] sup-
ports single and double in memory, but converts all
single format data to normalized double format in the
floating-point registers (FPRs). When storing data to
memory, both of these architectures must also denor-
malize some data values that have a lower precision
than the internal format. An actual implementation
can vary from this architectural model. Some Pow-
erPC implementations, for example, provide extra bits
called tags with each register which allow denormals
and sometimes other special values to be quickly recog-
nized during instruction processing. Use of these tags
would allow a denormal single to be loaded into the
FPRs unnormalized. The constraints of the microar-
chitecture, such as timing considerations of load and
store operations, how instructions are dispatched to
each unit, whether registers are renamed, and so on,
may affect such design choices.

Despite the similarities described above for handling
denormal data from memory, the IA-32 and PowerPC
differ in how they handle results which correspond to
denormal values. The IA-32 architecture supports both
single and double precision instructions when the re-
sults are normalized. However, the precision control
only affects the fraction length. The exponent range
for all operations is the same as for double extended

operations. Thus, results may differ from an archi-
tecture which fully implements both single and double
precision as specified in the IEEE 754 standard [1], al-
though this difference would usually result in greater
accuracy. Therefore, the TA-32 arithmetic operations
can only produce a denormal result in its double ex-
tended range. Single and double denormals are only
produced when storing such values to memory. The
PowerPC, on the other hand, when executing single
precision instructions, must round all denormal results
at the proper boundary. This requires that it first pro-
duce an unnormalized result with its exponent clamped
at Emin, and then convert it to the normalized double
format. If tags are used which permit unnormalized
single precision representations in the FPRs, then con-
version after rounding can be avoided.

The Intel TA-64 [7] illustrates yet another varia-
tion in which all precisions are represented only in the
widest format, which is 82 bits. It includes a 17 bit
exponent field and a 64 bit significand. Like the TA-
32, the significand includes an integer bit and a 63 bit
fraction. However, the IA-32 disallows unnormalized
representations other than true double extended de-
normals. The TA-64, on the other hand, represents the
integer bit, or implied bit, so that single and double de-
normals which are loaded from memory or which result
from single or double operations are represented in the
registers with unnormalized significands and with the
exponent set to Emin of the corresponding precision.
Thus, a scheme for avoiding normalization corresponds
to non-architected representations in the PowerPC and
in some implementations of IA-32, but corresponds to
architected representations in the IA-64. Thus, the IA-
64 provides full IEEE compliance for single and dou-
ble precision. A separate range control bit is provided
which either sets the exponent range to 17 bits, or to
the range which corresponds to the specified precision.

The IBM zSeries architecture[8] (which is the new
name for the 64-bit version of S/390[9]) illustrates a
very different choice for internal representation of the
supported precisions. Both single and double precision
data are represented in the FPRs with the same for-
mat as in memory. Thus, single precision data only
occupy the left half of the 64-bit registers, and all de-
normals must be represented in the denormalized for-
mat within these registers. However, since the exe-
cution dataflow is optimized for double precision, the
single format data is converted to an internal format
which supports six different data types. There are sin-
gle, double, and quadword data types for both Binary
Floating-Point (BFP) and Hexadecimal Floating-Point
(HFP). The architecture allows instructions defined for
any of these data types to operate on the contents of



any of the FPRs, whether it makes sense or not. There-
fore, creating tags for special operand values, as in the
PowerPC, is not too useful for this architecture.

Predetermining whether data is denormalized and
creating tags has limited value even for architectures
such as the PowerPC. It may solve some problems while
creating new ones. In some cases, tagging can save
hardware and eliminate critical paths since the detec-
tion of denormalized operands is done prior to arith-
metic calculation. But then creating the tags them-
selves may present difficulties. On the other hand, even
without tagging it is possible to have implementations
which can handle denormalized operands at speed. In
the next section, more details concerning tags are dis-
cussed. Then the following sections describe handling
of denormal operands for various operations without
use of tags. The case study in section 9 then illustrates
how tags are used in the Power4 FPU and in related
implementations.

3. Register Files with Tags

In the previous section, for architectures such as
the PowerPC, we showed that tagging the data that
is loaded into the FPRs can simplify the conversion of
single denormals to double format. For normal data,
this conversion only requires adding three exponent
bits corresponding to the complement of the exponent
high order bit, and padding zeros to the low order bits
of the fraction. But for denormalized operands, the
data either needs to be normalized or else must be
represented in a non-architected format. This format
might consist of just a tag bit and an unnormalized sig-
nificand which must be dealt with in later operations.
The tag bit is needed to distinguish this value from a
normalized double precision number having the same
exponent.

If normalization is to be done at the time the data is
loaded, then either special hardware must be added for
counting the number of leading zeros and then shifting
the fraction, or else one must pass the data through the
floating-point adder dataflow, making use of existing
hardware for doing these tasks. The FPRs may have
separate write ports just for data loaded from memory,
so using the adder dataflow would be difficult. In many
cases, tagging does not eliminate having to normalize
the data before instruction processing, but merely de-
lays it until the data is needed and the adder dataflow
can more easily be used.

Once tagging is added, it can be exploited to help
simplify instruction processing in other ways. A tag
could be used not just for single precision denormals
but for double precision denormals as well in deter-

mining the value of the implied bit. Also, if processing
of an instruction requires that the operands be first
normalized, then subsequent instructions must be pre-
vented from being issued to the unit. It is important
to recognize these cases quickly, and tag bits can help
in their detection. Additional tag bits can also be used
to quickly detect other special values, such as infinities
and NaNs. If instruction issuing needs to be stalled for
prenormalizing operands, then it is also desirable to
distinguish denormals from zeros, which do not require
prenormalization. Another use for tagging, which was
mentioned in the previous section, is to avoid renormal-
izing single precision denormals after they are rounded.
Also, if they are later stored to memory in single for-
mat, denormalizing them could also be avoided.

There are some costs and disadvantages to using
tags also. First, there is the extra circuitry and de-
lay to determine the tags. This may be much more
significant if the fraction must also be examined to dis-
tinguish zeros from denormals. If tags are also used
for double precision denormals, then all instructions
must also produce correct tags. This could complicate
instructions such as convert-to-integer, since the archi-
tecture may allow floating-point instructions to operate
on the result, although it would be nonsense. There is
also the cost of providing the tag bits to all of the reg-
isters, but that is not significant.

Another disadvantage is that multiple formats may
be used for the same data values. Double precision
store instructions may have to normalize unnormalized
single precision data, while single precision store in-
structions may have to denormalize data which is nor-
malized but in the single denormal range. All double
precision instructions may become more difficult to ex-
ecute when an operand may be an unnormalized single
denormal. In some PowerPC processors, all unnormal-
ized operands are prenormalized before the instruction
is executed, while in some other PowerPC processors,
prenormalization is done only in special cases.

Also, design verification becomes more difficult, be-
cause testcases may need to verify correct processing
for each format of a particular data value.

As previously noted, the use of tag bits may take
several forms. One method is to merely set a tag bit
for data from a single precision load, or possibly for
the result from any single precision instruction. When
the data is later read from the FPR, the tag and eight
exponent bits can be used to determine if the data is
a single precision denormal in a non-architected form.
This form of tagging requires no extra delay when load-
ing data from memory. If more time is available during
the load operation, the exponent can be examined for
all zeros, and the tag bit could then correspond to the



implied bit itself. This method is used in several imple-
mentations. The implied bit is determined during all
load, arithmetic and conversion operations, and stored
explicitly with the data in the FPR. The exponent LSB
is also set to one, so that the exponent corresponds to
the proper Emin. This simplifies the execution of sub-
sequent arithmetic operations for both single and dou-
ble precision. Considerably more circuitry and delay
is encountered if the fraction is also examined to set
tags which distinguish zeros and infinities from denor-
mals and NaNs. In the IA-64 architectural model, the
exponent is also forced to all zeros when the data is
zero. In the Power4 implementation of the PowerPC,
the exponent is not forced for these values, but the tags
override the exponent contents when the data is used.

4. Denormal Input for Addition

Floating-point addition of denormal operands is
more complex than for normalized operands. Floating-
point addition involves an exponent comparison and
difference calculation, alignment, conditional comple-
mentation, addition of significands, normalization, and
rounding. If there are denormal input operands the ex-
ponent difference calculation will be off by one and this
needs to be corrected. The exponent difference drives
the aligner and is timing critical. Typically implemen-
tations compute the exponent difference, D, and D—1,
and D+ 1.

Sum = A+ B
A = (—1)% & (a0 + Aj) # 24T bias
D = A.+ag—(B.+bo)

= Ae_Be‘i‘%_E
= A, —B.+z ,ze{-1,0,+1}

A late detection of operands equal to denormals then
selects between the exponent differences. An alterna-
tive implementation is to add a stage to the aligner to
perform a late correction shift based on which operand
is denormal.

Also implied ones of the significands must be cor-
rect too. Since the critical path is not the significand
input, this is not a problem. The most timing criti-
cal path is the exponent difference calculation and the
implied bit should be correct by the end of this calcula-
tion. One significand is shifted by the aligner while the
other is not needed until the carry propagate addition.
Therefore the significand can easily be corrected for an
implied bit.

5. Denormal Input for Multiplication

Floating-point multiplication typically involves a
Booth decode, partial product generation (Booth mul-
tiplexing), a counter tree, a carry propagate addition,
normalization and rounding. Multiplication can be
performed with a Booth decode which reduces the
number of partial products or as direct bit by bit mul-
tiplication. For floating-point multiplication the prod-
uct, P, is calculated for the multiplicand, X, and the
multiplier, Y, as shown by the following [10]:

n—1
X = =z + Zzi*2_i
i=1
n—1
Y = g9 + Zyj*Q_J
=1
n—1 n—1
P = zo*xyo + zo*Zyj*Q_j + yo*Zzi*2_i
j=1 i=1

n—1n-—1

+ Z E Tiy; * 9—(i+3)

i=1 j=1

where

P = locl 4+ loc2 + P ,

n—1n-—1

P = ZZziyj*Q_(i+j)

i=1 j=1

n—1
locl = zo*(yo —|—Zyj *2_j)

j=1
n—1

loc2 = yo* Z z;x 27"
i=1

Williams [11] separated the partial products that are
dependent on an implied one as denoted by locl and
loc2 (for leading ones correction), from the other par-
tial products denoted by P’. For a 53 bit direct mul-
tiplication (non-Booth) there were 52 partial products
representing P’ and just two others (locl and loc2)
dependent on the implied ones of the multiplier and
multiplicand. Williams noted that in a counter tree it
is common to have a few inputs that can have delayed
arrival times since they have less counters in their path.
Also, some counter designs are tapered having varying
propagation delay based on input and output. Thus, it
is possible to delay the two late arriving partial prod-
ucts while the exponent is examined for all zeros to see
if the implied bit should be a one or a zero.

A similar technique is used in the next zSeries FPU
which uses a Booth radix-4 multiplier [12]. Rather than
adding in a leading ones correction, leading zero cor-
rection terms are subtracted from the partial product



array.
n—1
X = z0+2zi*2_i
=1
n—1
Yy = yo-l-Zyj*?_j
Jj=1
L2521+t
Y =

Z W; * 477
i=1

w; e {-2,-1,0,+1,+2}
L2+
P = Z Wj*X*4_j
j=1
n—1
X' = 14 mix2
=1
X = X' -z
L2341
P o= ) WixX'x47 -Yxz
j=1
lzel = =Y xzo

Two terms could be used to correct for the multi-
plier and multiplicand if two late inputs are available
in the counter tree and the extra counter area is not a
concern. Note for each added term there will be one
additional 3:2 counter. A second solution is to cor-
rect the Booth decode (W term) prior to creating the
partial product dependent on the multiplier’s implied
bit. This would necessitate a delayed partial product
but would not add an additional partial product. Only
one correction term would be needed to correct for the
multiplicand’s implied bit. Actually Wi(yo = 0) and
Wi(yo = 1) are calculated in parallel and multiplexed
after yo is known.

Thus, there are multiple ways to correct for denor-
mal input into a multiplier. Additional partial prod-
ucts are needed with delayed inputs. In implemen-
tations where the counter tree can accept more rows
without adding stages, this type of design is non-timing
critical. It adds area of 1 or 2 - 3:2 counters but this is
small in comparison to the overall counter tree area.

6. Denormal Input for Fused Multi-
ply/Add

Several architectures including the PowerPC
floating-point architecture are optimized for the fused
multiply-add operation. This operation is a multiply-
add or multiply-subtract instruction, e.g. A*C + B or

A*C - B, where the AC product is not rounded before

the addition or subtraction. In all implementations,
the pipeline structure is optimized to exploit this oper-
ation, even though it may increase the latency of Add,
Subtract and Multiply instructions. For Add and Sub-
tract, the C operand is set to 1.0, and for Multiply, the
B operand is set to zero. Alignment of operands is one
function whose design is significantly different for this
architecture.

The usual method of aligning operands for Add and
Subtract is to compare the operand exponents and
then shift the operand with the smaller exponent to
the right. In a multiply-add operation, the B operand
is the only operand aligned and complemented. The
alignment is to any position up to a little over 53 bits
greater than the AC product or to the least significant
bit of the product. To minimize latency, the alignment
of B is done at the same time as the product is devel-
oped, then merged with the product in the final carry
save adder.

If the addend, B, is denormalized the main prob-
lem is correcting the shift amount. The significand can
easily be corrected before reaching the aligner. The
exponent correction is timing critical and will proba-
bly require multiple adders to compute the exponent
difference based on any of three operands being denor-
malized.

Sum = B+ AxC
B = (_1)35 * (bO —I—Bf) * 2Be+bo—bias
P = (_1)Ps * Pm % 2(AE+E+CE+E—bias)—bias
D = B.+bo— (A.+ag+ C. + o — bias)

= Be_Ae_Ce"f'bias'i'%_%_%

= B.—A,—C.+bias+z ,ze{-2,-1,0,+1}

Note that there is no need to consider both A and C
denormalized (z = —2) since this will severely under-
flow and thus will not have to be aligned with B even
if it is a denormal too.

If the multiplier or multiplicand are denormalized,
the exponent shift amount calculation is affected and
the significand calculation needs to be adjusted. Either
of the two techniques mentioned in the previous section
can be used to correct the significand.

A multiply-add dataflow can also have difficulty
with underflow if underflow traps are enabled. The
result written is a normalized significand rounded and
with a rebiased exponent prior to invoking the excep-
tion handler. The problem is that it is difficult to pro-
duce 53 bits of significance for the case of a denormal-
ized addend and when the product is less than the least
significant bit of the addend. The dataflow does not
separate the addend from the product properly and in-
stead incorrectly concatenates the addend with a cou-



ple guard bits to the product. To handle this case
some implementations like Power3 and Power4 prenor-
malize input denormals while others trap to software
when they detect the ”disjoint case” such as the latest
zSeries processor [13].

7. Denormalization

Once an intermediate result completes normaliza-
tion it can be determined whether the operand under-
flows. If the underflow trap is disabled, then the in-
termediate result needs to be aligned to an exponent
equal to Emin and then rounded. This alignment and
subsequent rounding operation is called denormaliza-
tion. The problem with denormalization is that by the
time underflow is detected it is too late in the pipeline
to utilize the normalizer. The data either needs a de-
normalization unit, or somehow needs to wrap back to
the top of the pipeline avoiding other instructions, or
somehow needs to avoid denormalization altogether as
discussed in the next section.

There have been several designs that assumed denor-
malization units such as by AMD [14, 15]. Basically,
rather than stalling the FPU pipeline, an intermedi-
ate result requiring denormalization would be sent to
another unit. The complication with this type of an im-
plementation is that it requires an out-of-order execu-
tion design since subsequent operations would pass the
instruction requiring denormalization. There would
have to be a checkpoint ordering buffer to re-order in-
structions coming from both the FPU and the denor-
malization unit. This buffering is already available in
an out-of-order execution design. However, the denor-
malization unit requires a large right shifter.

An alternative to adding a dedicated unit for denor-
malization is to utilize the existing shifters in the FPU.
In a non-pipelined design it is simple to feed data back
to the top of the pipeline to utilize the aligner or nor-
malizer for denormalization [16]. But in a pipelined
design there needs to be a mechanism to squash or
reorder subsequent instructions following the instruc-
tion requiring denormalization. Schwarz [17] shows a
mechanism for feeding back an intermediate result to
an early stage in the pipeline if it is detected that there
are no other instructions in the pipeline. In the case
there is another instruction in the pipeline, all instruc-
tions are flushed from the pipeline and the one requir-
ing denormalization is re-issued in non-pipelined mode.
If the second execution requires denormalization, the
instruction is guaranteed to have the FPU pipeline to
itself and be able to perform denormalization. No re-
sults are saved from the first execution and if another
processor in the configuration happens to write over

the instruction or data, then the second execution may
no longer require denormalization. This technique was
used on the 1998 S/390 G5 FPU [18] and only added a
little control logic since there was already a mechanism
for conditionally issuing an instruction in a pipelined
or non-pipelined manner.

Other similar techniques to this proposal have been
used. Another FPU detected underflow early enough
in the pipeline to stall a subsequent instruction from
reaching the normalizer. And then it fed back the nor-
malizer output back to its input to effectively right shift
the intermediate result. The key to this technique is
detecting possible underflow in an early stage and forc-
ing stalls to separate instructions.

Another variation that the authors have seen of this
technique is to detect underflow very late and provide a
small shifter at the bottom of the dataflow. Underflow
is detected in the normalizer. The pipeline is stalled
at this point until denormalization is complete. The
latch feeding the rounder also has a feedback path with
a small multiplexor which enables a hold of the latch
or up to a 4 bit shift. The data is right shifted 4 bits
each cycle until it reaches the point where the expo-
nent is equal to Emin. Then the stall is released and
the data rounded properly to complete denormaliza-
tion. This technique only requires a very small shifter
and not much detection logic. It does create stalls in
the pipeline which can be timing critical and therefore
is not implemented frequently. The denormalization
process for double precision can require up to 13 cycles
but this is much less than trapping to software. The
main drawback is the late detect of a stall can cause
timing critical control signals. This type of technique
was implemented in the 1998 S/390 G5 FPU to handle
quad precision denormal numbers since the feedback
paths in the dataflow were only double precision.

8. Preventing Denormalization

Denormalization can be prevented. The trick is to
prevent normalizing past the radix point of a denor-
malized result. Urano [19] shows the simple technique
of comparing the shift amounts for a denormal result
versus the shift amount from a leading zero anticipa-
tor, and selecting the least shift amount. Goshtein and
Khlobytev [20] also show a design of creating the two
shift amounts in parallel, and they go on to suggest
two units for the implementation. One unit supports
the normalized dataflow with limited shifts while the
other dataflow is slow and supports the maximum shift
amounts. Grushin and Vlasenko [21] also suggest cre-
ating both shift amounts but they go into a reduction
of the equation of the shift amount. They reduce the



comparison and selection of the lesser shift amount into
one equation. All of these techniques create a separate
shift amount for denormals and for complete normal-
ization, and have different techniques for choosing the
lesser of the shift amounts.

Some high speed designs get rid of the choice be-
tween two shift amounts and combine the maximum
shift amount of a denormal back earlier in execution.
Naffziger and Beraha [22] determine the bit of the LZA
which corresponds to the position of most significant
bit of a denormal and force this bit to a one. All bits
are examined in parallel and basically a decode of the
maximum shift amount is done and used to force the
LZA bit to a one. Bjorksten, Mikan, and Schmook-
ler [23] in Power3 create a vector corresponding to the
denormal maximum shift amount, using a monotonic
mask. It has ones in every bit starting with the most
significant bit of a denormal. This denormal vector is
logically ORed with a monotonic LZA vector, and the
resulting vector is used to encode the shift amount.
The following shows a similar method without using a
monotonic mask:

Vi = Pi_2Z;,1Z; + Pi_2G;_1G;
+ P,_2Gi_1Z; + P,_2Z; 1G;

UZ' = (Z = (Eproduct - Emzn) )
M, = V; + U
Shift LZD(M)

where V is a commonly used LZA vector which exam-
ines three bits in parallel, P is a bit propagate using
an exclusive OR function, G is a bit generate, Z is a
bit zero term, U is a vector of the maximum a denor-
mal can be shifted, and + represents the logical OR
function, and juxtaposition represents a logical AND
function. M is the combination of the LZA vector and
denormal vector, and the resulting shift amount should
be based on a Leading Zero Detect of M. The shift
amount calculation can be made a little simplier with
a monotonic mask.

Handlogten [24] in the PowerPC A50 moved the log-
ical ORing process one step further back. Handlogten
ORs the denormal vector with both the carry and sum
input to the LZA. And then just the LZA output and
the resulting LZD is used to create the shift amount.

9. Case study of Power4

The Power4d FPU design illustrates the use of sev-
eral techniques for handling denormal operands and
results. Early in the program, performance consider-
ations forced several key decisions regarding how de-
normals would be handled. Each of these decisions

required that certain mechanisms be provided to han-
dle special cases. However, we then expanded on each
of these mechanisms to further simplify the design or
reduce critical timing paths, without significantly af-
fecting performance.

The first key decision was that denormal data from
memory would be loaded into dedicated write ports
of the FPRs without first normalizing it. This would
avoid the delay and area for counting leading zeros in
the fraction and then shifting it. Therefore at least one
tag bit was needed to help identify a single precision
denormal value. It was determined that we would have
enough time while transmitting data from cache to also
determine whether the exponent field was all zeros or
all ones, and whether the fraction was all zeros. So,
three tag bits were added, along with an integer bit
corresponding to the implied bit. The tag bits allowed
all special values to be quickly identified for special
handling during execution of arithmetic instructions.

The second decision was that some mechanism
would be needed for normalizing denormal operands
for some special case arithmetic operations. The previ-
ous processor, the Power3, had attempted to eliminate
stalling instruction issuing based on data values. It
successfully eliminated stalls based on unusual results
such as for denormal values. However, there were sev-
eral rare cases involving a denormal addend with the
fused multiply-add instructions which were too diffi-
cult to handle without first normalizing it. The Power3
prenormalizes the addend just for those cases, passing
it through the pipeline, utilizing the leading zero an-
ticipator (LZA) and normalizer and then returning it
to the top of the pipeline before executing the oper-
ation. During this prenormalization stall, the instruc-
tion queue is prevented from issuing instructions. From
this experience, it was decided that Power4 would also
need a prenormalization stall. However, since denor-
mal operands are very rare, it was also decided that all
operands would be prenormalized for both single and
double precisions instructions. For the multiply-add in-
structions, which may have three denormal operands,
they are pipelined so that each additional denormal
operand takes only three more cycles. Prenormaliza-
tion simplifies the execution of most instructions, and
the effect of the stalls on performance is negligible. The
tag bits used in Power4 enable denormal operands to be
detected more quickly, thereby allowing the stall signal
to be sent out earlier to prevent the next instruction
from entering the pipeline.

Prenormalization of a double precision operand re-
sults in an intermediate exponent which is below
Emin, and thus requires another exponent bit. In
Power4, two internal exponent bits are added. This



allows for the product of two denormals when the un-
derflow trap is enabled, and also avoids ambiguity in
the alignment shift count which could otherwise wrap
past zero or all ones. Although these extra bits are
only needed in the dataflow, Power4 adds them also to
the contents of the FPRs. When data is loaded from
memory, these bits are determined along with the tag
bits. All arithmetic results must also produce the 13
bit exponent.

A third important decision in the design was that a
short stall would also be allowed when various unusual
results are produced. These include cases where very
large normalization shifts might be needed, denormal
results occur, or rebiasing of the exponent is needed
for trapped underflow or overflow. Power3 was able
to avoid stalls for these cases but with difficulty. In
a multiply-add operation, a 108-bit LZA and normal-
izer is needed, and the normalizer must also be limited
when the intermediate exponent is near Emin. Detec-
tion of a possible unusual result would cause a back-end
stalltwo cycles before the actual stall, thus allowing the
instruction queue to halt and the upper stages of the
pipeline to also halt. The stall would allow the output
data to recycle back through the last two stages, which
are the normalizer and the rounder. Thus, most stalls
are only two cycles. If a denormal result is needed, the
data is normalized the first trip through the pipeline
but is not rounded. During the stall, it is then sent
back to the normalizer but aligned 65 bit positions to
the right. The low order bits of the intermediate expo-
nent, which is smaller than E'min, provide the proper
shift amount for the normalizer. The stall also allows
the LZA and normalizer to be much smaller. Even with
stalls occurring at times when the result is normal, the
two-cycle delay does not have a very significant effect
on performance.

It is possible to have both types of stalls in progress
within the pipeline at the same time. An instruction
may begin a prenormalization stall in stagel. It may
advance up to the fourth stage when the previous in-
struction reaches stageb and begins a back-end stall.
The prenormalization stall is then stopped until the
back-end stall is completed.

There is one other interesting mechanism that is
used for denormals which has not yet been described.
Single precision denormal values may be held in the
FPRs with the significand either normalized or unnor-
malized. If a double precision store to memory is to
be executed and it is unnormalized, then a prenormal-
ization stall is taken to normalize it. However, if a
single precision store needs to be executed and it is
normalized, then it needs to be denormalized. Rather
than taking the data through the pipeline and denor-

malizing it, the alignment shifter is used. All data for
stores use the Add operand input in the multiply-add
dataflow. Since there are no other operands entering
the multiplier, constants are forced into the exponents
which correspond to those operands. If the sum of
those constants is Emin, then the aligner will shift
the significand to the right a distance equal to the dif-
ference of Fmin and the exponent of the normalized
operand.

10. Conclusion

Implementing denormalized numbers in hardware is
possible with a small amount of additional hardware.
The usefulness of tagging has been discussed and its
utility is partially dependent on the architecture of the
processor. Denormalized input operands can be han-
dled for multiply and add operations by performing
multiple corrections of the exponent difference calcula-
tion for alignment and by correcting the multiplication
result by adding correction terms. An underflow condi-
tion with traps disabled requires a denormalized result.
Denormalization can be handled in a denormalization
unit or it can be prevented by stopping the normal-
izer from shifting past the radix point of denormalized
number. This is accomplished by modifying the leading
zero anticipate logic to prevent an indication of more
than this radix point.

Also, shown is a case study for the new Power4 FPU
which handles denormalized numbers in hardware. It
uses a combination of tagging and prenormalization to
prevent denormalization and to handle denormal input.
The result is a processor which executes denormalized
operands with only a few additional cycles over the
execution of normalized operands.
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