

Hardware Design of a Binary Integer Decimal-based
 Floating-point Adder

Charles Tsen Sonia González-Navarro Michael Schulte
University of Wisconsin Universidad de Málaga University of Wisconsin

stsen@wisc.edu sonia@ac.uma.es schulte@engr.wisc.edu

Abstract

Because of the growing importance of decimal
floating-point (DFP) arithmetic, specifications for it are
included in the IEEE Draft Standard for Floating-point
Arithmetic (IEEE P754). In this paper, we present a
novel algorithm and hardware design for a DFP adder.
The adder performs addition and subtraction on 64-bit
operands that use the IEEE P754 binary encoding of
DFP numbers, widely known as the Binary Integer
Decimal (BID) encoding. The BID adder uses a novel
hardware component for decimal digit counting and an
enhanced version of a previously published BID
rounding unit. By adding more sophisticated control,
operations are performed with variable latency to
optimize for common cases. We show that a BID-based
DFP adder design can be achieved with a modest area
increase compared to a single 2-stage pipelined 64-bit
fixed-point multiplier. Over 70% of the BID adder’s
area is due the 64-bit fixed-point multiplier, which can
be shared with a binary floating-point multiplier and
hardware for other DFP operations. To our knowledge,
this is the first hardware design for adding and
subtracting IEEE P754 BID-encoded DFP numbers.

1. Introduction

Decimal floating-point (DFP) arithmetic is important
in many applications because of its ability to represent
decimal fractions exactly and to mimic manual
calculations that perform decimal rounding. Because
binary floating-point (BFP) arithmetic neither provides
correct decimal rounding nor exactly represents many
decimal fractions, such as 0.01, 0.0475, and 10-35 [1],
numerous applications require DFP arithmetic. Such
applications include currency conversion, insurance, tax
calculations, billing, and banking. One study estimates
that BFP arithmetic errors can accumulate to an annual
error of over $5 million for large billing systems [2].

Applications that cannot tolerate errors due to BFP
arithmetic often use software to perform DFP arithmetic
[1]. Software packages for DFP arithmetic include

IBM’s decNumber library [3] and the Java BigDecimal
library [4]. Intel recently published results for a Binary
Integer Decimal (BID) software library [5, 6]. These
software packages are adequate for many applications,
but as globalization and e-commerce grow, software
performance for DFP arithmetic may not suffice.

Several hardware designs for DFP arithmetic have
been developed using encodings other than BID [7, 8, 9,
10, 11]. Recently, IBM announced DFP hardware on its
Power6 server processor [12] and System z9 processor
[13] using the Densely Packed Decimal (DPD)
encoding, discussed in Section 2. Previous designs for
DFP arithmetic differ from our design in that they
operate on significands with a decimal radix of 10, such
as Binary Coded Decimal (BCD) or DPD, as opposed to
BID’s binary radix of 2.

Addition and subtraction operations occur frequently
in DFP applications, so the design of a DFP adder with
correct rounding is very important. In this paper, we
present a hardware design that correctly performs
addition and subtraction on 64-bit BID-encoded DFP
numbers for all IEEE P754 rounding modes. We do not
address exceptions or special values such as NaN and
infinity. Our BID adder differs from previous DFP
adder designs, which operate on DPD-encoded numbers
[14, 15]. It uses a novel hardware component for
decimal digit counting and leverages an enhanced
version of a previously published BID rounding unit
[16]. Furthermore, operations are performed with
variable latency to optimize common cases.

We believe ours is the first hardware design for
adding and subtracting BID-encoded floating-point
numbers. This may be due to a perception that the BID
format is more appropriate for software rather than
hardware. Contrarily, we argue that BID is well suited
for hardware implementations, since it can share
hardware with binary arithmetic units. For example, a
64-bit fixed-point multiplier occupies a large percentage
of the area of our BID adder, can also be used to perform
BFP multiplication, and BID multiplication, comparison,
minimum, maximum, quantize, and toIntergalValue.

The remainder of this paper is organized as follows.
Section 2 discusses DFP numbers in IEEE P754.

1-4244-1258-7/07/$25.00 ©2007 IEEE 288

Section 3 discusses the challenge of adding BID-
encoded numbers, and presents the technique and theory
for BID addition and subtraction. Section 4 combines
the concepts from Section 3 to show a compact DFP
adder design. Section 5 provides preliminary synthesis
results. Section 6 presents our conclusions.

2. Decimal Numbers in IEEE P754

Due to the importance of DFP arithmetic, the IEEE
P754 Draft Standard for Floating-Point Arithmetic
includes specifications for DFP formats and operations
[17]. In IEEE P754, the value of a finite DFP number is:

CbiasES ××− −10)1(

where S is the sign bit, E is a biased exponent, bias is a
constant value that makes E non-negative, and C is the
significand. IEEE P754 specifies two methods for
encoding the significands of DFP numbers; Binary
Integer Decimal (BID) [18] and Densely Packed
Decimal (DPD) [19]. With BID, each significand can be
viewed as an unsigned binary integer. With DPD, each
significand can be viewed as an unsigned decimal
integer, in which groups of 10 bits represent three
decimal digits [19]. In IEEE P754, the BID encoding is
called the binary encoding and the DPD encoding is
called the decimal encoding, but either encoding can be
used to represent DFP significands. For example, 5.43 is
represented as 543 × 10-2, where the significand, 543,
can use either the BID or DPD encoding.

The significand of a DFP number is not normalized,
meaning that a single DFP number may have multiple
representations. For example, 3 × 10-1, 30 × 10-2, and
300 × 10-3 all have the same numeric value, but they
have different IEEE P754 representations. Because of
this characteristic, IEEE P754 defines the Preferred
Representation Exponent, which specifies a required
exponent, and implicitly the significand, after each
decimal operation. For example, with decimal addition
and subtraction, the exponent of the result equals the
smaller exponent of the two input operands if the result
is exact. If it is not exact, the exponent is selected to
maximize the number of significant digits in the rounded
result. IEEE P754 specifies five rounding modes for
DFP arithmetic: roundTiesToEven (RTE),
roundTiesToAway (RTA), roundTowardZero
(RTZ), roundTowardNegative (RTN), and
roundTowardPositive (RTP).

 For 64-bit DFP numbers, of decimal64 type, the
precision is p = 16 decimal digits. The decimal64
significand is 54 bits, because the maximum significand
supported is 1016 - 1, which is less than 254. The biased
exponent is ten bits, and one bit represents the sign.

BID lends itself to high-performance binary circuits,
since the significand is a binary integer. However, a
challenge is performing efficient significand alignment
and rounding. Section 3 describes our technique for
BID addition and subtraction and illustrates the
challenges that we address in this paper.

3. BID Addition/Subtraction Technique

In the following discussion, let A and B be the DFP
operands represented by the triples of (Asign, Ac , Aexp)
and (Bsign, Bc , Bexp), respectively. The subscripts sign, c,
and exp represent the sign, significand, and exponent of
an operand, respectively. In our design, the inputs may
be swapped to enable the simplifying assumption that
Aexp ≥ Bexp. The swapped operands, AN and BN, are
represented by the triples (ANsign, ANc , ANexp) and (BNsign,
BNc , BNexp), respectively.

To help understand the hardware implementation of
our BID adder, we first describe a high-level approach
for BID addition. Abstractly, the addition of two DFP
numbers can be thought of as an alignment of the
significands so that the exponents are equal, followed by
adding the aligned significands, followed by rounding
the intermediate result to the format’s precision. Since
DFP numbers have an exponent base of 10, alignment of
significands corresponds to multiplication by powers of
10. Rounding DFP numbers by d decimal digits is
equivalent to discarding d digits, followed by a possible
increment of the truncated significand, depending on the
rounding mode, and an increase of the exponent by d.

As a potential technique for implementing BID
addition in the decimal64 format with p = 16, consider
the addition of AN = 1,234,567,890,123,456 × 1017 plus
BN = 6,543,210,987,654,321 × 1012. With this technique,
ANc is first multiplied by 10(Aexp - Bexp) = 105 to align it
with BNc, having an exponent of 12. After addition, the
intermediate significand is ZIc = 123,463,332,223,333,
254,321 and the intermediate exponent is ZIexp = BNexp =
12. The 21-digit intermediate significand is then rounded
to fit in 16 digits, so d = digits(ZIc) – p = 21 – 16 = 5
digits are rounded off and the intermediate exponent is
increased by d. Thus, in the RTZ rounding mode, the
correctly rounded significand and exponent are Zc =
1,234,633,322, 233,332 and Zexp = BNexp + d = 12 + 5 =
17. With unconstrained hardware resources, this
approach suffices for all exponent values, but it is not
practical. If A and B have the decimal64 format’s
maximum exponent difference of 767, ZIc has over 2,500
bits, which is not practical for a rounder to handle.

289

Our design uses a BID rounder that can handle inputs

of up to 64-bits, such that intermediate results can have
values up to 264-1 = 18,446,744,073,709,551,615, which
is a 20 digit number. This size is chosen because the
critical operation in BID-based rounding is
multiplication [20], and many processors include a 64-bit
by 64-bit multiplier. With a rounder of this size, we
divide the problem space into three cases. In the first
case, ZIc is guaranteed to fit into the 64-bit rounder, and
an approach similar to that shown in the previous
example is used. The second case is a special case of the
first case, where Aexp = Bexp. This case occurs frequently

in DFP applications [21], does not require significant
alignment, and requires rounding of at most one digit. In
the third case, the intermediate result is too large for the
rounder and an alternative approach is necessary.

3.1 BID Addition/Subtraction Algorithm

In this section we present our proposed BID
addition/subtraction algorithm and implementation. The
general algorithm is given in Figure 1. For simplicity,
the algorithm does not address exceptions or special case
handling for NaN and Infinity. We describe sections of
the algorithm in general terms and the modules used to
implement them. In Section 4, we present the complete
BID adder design.

In the algorithm, three functions are used, with the
following definitions:

digits(n1) - the number of decimal digits in n1
max(n1, n2) - the greater of n1 or n2
round(n1,d) - the value of n1 after rounding off d

digits in the prevailing rounding
mode.

Step 1 of the BID Addition/Subtraction Algorithm
consists of some initial computations to prepare the
operands for further processing. First, the operands may
be swapped, as shown in Figure 2, so that AN is the
operand with the larger exponent in the rest of the
circuit. This is similar to a technique used in BFP
addition [20]. Also, the effective operation (EOP) is
computed, based on the input operation (OP) and the
signs of the operands, Asign and Bsign, as EOP = OP xor
Asign xor Bsign, where OP is zero for addition and one for
subtraction.

Step 2 of the BID Addition/Subtraction Algorithm
consists of calculating the number of decimal digits in
ANc, which is referred to as Qa. Counting decimal digits
is important in BID-based DFP hardware. For example,
it is also needed in Case 1, which is described later.

BID ADDITION/SUBTRACTION ALGORITHM

Step1: Compare Exponents K = |Aexp – Bexp|

 Swap operands if (Aexp – Bexp) < 0

 Determine Effective Operation (EOP)

Step2: Qa = digits(ANc)
Step3: Examine r = Qa + K

 Case1: r ≤ 19 AND K ≠ 0
 ZIc = |10

K ANc ± BNc|

 ZIsign = (10
KANc ± BNc < 0)

 QI = digits(ZIc)

 d1 = max(0, QI - 16)

 Zc = round(ZIc, d1)

 Zexp = ANexp – d1

 Zsign = ANsign XOR ZIsign

 Case2: K == 0 // thus r ≤ 16
 ZIc = |ANc ± BNc|

 ZIsign = (ANc ± BNc < 0)

 Zsign = ANsign XOR ZIsign

 If (ZIc < 10
16)

 Zc = ZIc
 Zexp = ANexp
 Else

 Zc = round(ZIc, 1)

 Zexp = ANexp + 1

 Case3: r > 19 // thus K ≥ 4
 g = 16 - Qa

 d3 = K – g

 ZIC = 10
g ANc ± round(BNc, d3)

 ZIexp = ANexp - g // = BNexp + d3

 Zsign = ANsign
 If (ZIC ≥ 1016)
 // second round needed:

 Zc = round(ZIC, 1)

 Zexp = ZIexp + 1

 Elsif (ZIC < 10
15)

 // recalculate:

 Zc = 10
g+1 ANc – round(BNc, d3-1)

 Zexp = ZIexp - 1

 Else

 Zc = ZIC

Figure 2: Hardware for Algorithm Step1

Figure 1: BID Addition/Subtraction Algorithm

290

Furthermore, counting decimal digits is a challenge since
BID significands are represented in binary. To resolve
this challenge, we present a novel hardware component
to calculate the number of decimal digits of a BID
significand.

A general top-level design of this digit-counter is
shown in Figure 3, whose input to x in Step 2 of the BID
Addition/Subtraction Algorithm is ANc. The module uses
a binary leading-1 detector to determine the bit position,
m, which indexes into a lookup table (LUT) to estimate
the number of decimal digits in x. This estimate is
denoted as n and may be one digit less than the actual
number of decimal digits. If m is the position of the most
significant bit, the decimal value range is [2m, 2m+1 – 1].
Table 1 illustrates the relationship between m and the
number of decimal digits, and shows that there is an
uncertainty in roughly 1 out of log210 entries, based on
where binades and decades overlap. The idea is simple,
but the table helps illustrate the motivation behind the
design of the Decimal Digit Counter. In Table 1, the
lower number of the rightmost column is bolded and is
the value of n for the LUTs. Table 1 shows m up to 63,
the largest value needed in our design. In Step 2, m up to
53 suffices.

Leading 1
bitpos (m)

Decimal Value Range Decimal
Digits

0 1 1
1 2-3 1
2 4-7 1
3 8-15 1 or 2
4 16-31 2
5 32-63 2
6 64-127 2 or 3
7 128-255 3
8 256-511 3
9 512-1,023 3 or 4

10 1,024-2,047 4
… … …
63 9,223,372,036,854,775,808-

18,446,744,073,709,551,615
19 or 20

In our implementation, each entry is indexed by m
and each entry of the LUT contains n, the minimum
number of decimal digits for a given value of m. For
example, if the leading one of the BID significand x is in
bit position m = 3, then x can be between 8 and 15. As
shown in Table 1, the minimum number of decimal
digits that x can have in this case is n = 1. Thus, this
lookup table provides the number of decimal digits in x,
with an error of at most one. In this example, if the input
significant is 12, the number of decimal digits is 2.

Another lookup table, indexed by m, stores pre-
calculated values of 10n, such that 10n is the smallest
power of ten greater than 2m. Following the earlier
example, the power of ten stored in index m = 3 of this
second lookup table is 10 (since 10 > 23). Finally, if x <
10n then n is chosen as the output of the digit counter;
otherwise n+1 is chosen.

Due to using a rounder that handles inputs with at
most 20 digits, we characterize the input as one of three
cases: (1) ANc × 10K < 1019 and ANexp ≠ BNexp, (2) ANexp =
BNexp (thus ANc × 10K < 1016), and (3) ANc 10K > 1019.

In Case 1, ZIc = |10K × ANc ± BNc| can be handled by
our rounder, and several computations are performed.
First, ANc is multiplied by 10K, which is obtained from a
LUT indexed by K. The hardware for the LUT and
multiply is shown at the top of Figure 4. Next, the
Add/Subtract and Absolute Value Unit computes ZIc =
|10K × ANc ± BNc| and ZIsign = (10K × ANc ± BNc < 0) based
on EOP. ZIsign is used to help determine the sign of the
final result. Once ZIc is computed, it is sent to the
rounder. To determine the number of digits to round off,
a digit counter is used. The number of digits to round
off is d1 = max(QI - 16, 0), where QI = digits(ZIc).

Case 2, in which Aexp = Bexp, represents an optimized
Case 1. A previous study [21], found that a large
percentage of DFP addition operations have operands
with identical exponents. In some DFP applications, Aexp
= Bexp in over 90% of the addition operations [21].
Because this case is so common, Amdahl’s Law suggests
that it is worth optimizing.

Figure 3: Decimal digit counter

Table 1: Bit position in unsigned binary
number versus number of decimal digits

291

In Case 2, the input exponents are equal and thus
significand alignment is not needed, saving a multiply.
Also, rounding is only needed when ZIc ≥ 1016.
Consequently, the rounder may be skipped, with
detection of the case where the result does not fit in the
format’s precision. Handling Case 2 with the ability to
bypass the rounder comes at a small incremental
hardware cost, requiring just two multiplexers and logic
to detect if ZIc ≥ 1016, as shown in gray in Figure 4. This
detection logic sets a flag when ZIc ≥ 1016 to indicate that
the final result should be taken from the rounder. When
ZIc ≥ 1016, the rounder rounds one digit from ZIc and the
exponent logic sets Zexp to ANexp + 1.

The same hardware used in Case 2 can also improve
the latency of Case 1, when ZIc < 1016 and Aexp ≠ Bexp.
Since rounding is not needed when ZIc < 1016, the result
may come directly from the Add/Subtract and Absolute
Value Unit, bypassing the rounder. This improvement is
not shown in Case 1 of Figure 1 and is not implemented
in our BID adder, but it can easily be added.

Case 3 handles the situation when ZIc = |10K × ANc ±
BNc| is too large to be handled by the rounder. The
hardware shown in Figure 5 follows the BID
Addition/Subtraction Algorithm by rounding BNc to give
B’, which is then added to or subtracting from 10g × ANc.
As shown in Figure 5, the hardware to handle this case
consists of similar components to Cases 1 and 2, but the
ordering differs. The first step is to determine how many
digits need to be rounded from BNc. BNc is rounded by d3
= K - g digits, where g = 16 - Qa and K = | Aexp – Bexp |.
The main idea here is to compute the number of digits in
BNc that do not overlap with an aligned 10g × ANc that
occupies the full precision of 16 digits. ANc is multiplied
by 10g to ensure its most significant digit is in the
format’s most significant digit position. As in Case 1,
this is accomplished with a LUT before the multiplier,
but in this case the index is g. B’ is then added to or
subtracted from 10g ×ANc, depending on EOP. The
multiplier may be bypassed if g = 0.

The algorithm, as we have discussed up until now
provides correctly rounded results for the overwhelming
majority of inputs. However, Case 3 leaves two
situations in which results need to be adjusted to comply
with IEEE P754. The first is when the EOP is addition
and the number of digits in the intermediate result ZIc
exceeds the format precision (ZIc ≥ 1016). The second
occurs when the EOP is subtraction and the intermediate
result has too few digits of precision (ZIc < 1015). To
illustrate these two cases, we show two examples.

The problem of too many digits in ZIc occurs, for
example, when adding A = 9,999,999,999,995,555 × 1011

plus B = 5,555,400,000,000,001 × 100. To realize the
addition using our BID adder, the operands follow the
hardware path shown in Figure 5 for Case 3. Since Qa =
16 and g = 0, operand A need not be pushed, but operand
B is rounded off by d3 = K - g = 11 decimal digits. If we
consider the RTZ rounding mode, this gives us the
addition of operand ANc = 9,999,999,999,995,555 and the
rounded operand B' = 55,554 to produce the intermediate
significand ZIc = 10,000,000,000,051,109, having 17
digits, which is one digit more than the format precision.
To obtain the correctly-rounded 16-digit result, the least
significant digit of ZIc is rounded to produce Zc =
1,000,000,000,005,110 and the inter-mediate exponent is
incremented to produce Zexp = 12.

The problem of too few digits in ZIc is shown with the
subtraction of B = 1,111,222,233,340,000 × 107 from A
= 1,000,111,122,223,333×1011. As in the previous
example, to realize the subtraction the operands follow
the hardware path shown in Figure 5. In this case, the
number of digits rounded off from the operand B is the
exponent difference of K = 4. Thus, the operands for
subtraction are ANc = 1,000,111,122,223,333 and B' =
111,122,223,334 whose resultant significand is ZIc =

Figure 4: Direct hardware for Cases 1 and 2

292

999,999,999,999,999, which has 15 digits, one digit less
than the format precision. To obtain the correctly
rounded 16-digit result, the alignment and rounding are
recalculated, with g increased by 1 and d3 decreased by
1, so that one less digit is rounded off. This gives Zc =
9,999,999,999,999,990 and Zexp = 10.

In Case 3, the algorithm detects the occurrence of

either of these situations. The detection can be enhanced
by restricting it to test for greater than or equal to 1016

 if
the operation is addition and less than 1015

 if the
operation is subtraction, as shown in Figure 5. If either
of these situations is detected, the results can be fed back
through the rounder or recalculated. This technique
provides variable latency results, and it is the approach
used in our design. The need to feed results back through
the rounder or to recalculate results should be rare, as it
only occurs in Case 3 when the four most significant
digits of 10g × ANc are 9999 for addition or 1000 for
subtraction.

3.2 BID Rounder Enhancements

The rounder design is an important component of the
overall BID adder. We use a rounder that has been
enhanced from the BID rounder design presented in [16].
The design presented in [16] only performs rounding up
to 16 decimal digits and cannot be used to implement our
algorithm. There are two major enhancements to this
design. First, it has been expanded to use a 64-bit
multiply as necessary in our algorithm. Second, it has
more control bits to allow the rounding direction to be
determined based on external information. The added
control bits and their function are listed below.

a_odd_even: indicates whether A is odd or even
override_active_in: indicates whether in Case3
sub_rnd_mode: indicates if the EOP is subtraction;,

which affects rounding decisions, as shown in
Table 2

rnd2_active: indicates second pass through the
rounder to avoid double rounding errors

rnd2_active_prev_dir: on the second pass through
the rounder, indicates the direction of the first
pass to avoid double rounding errors

In Case 3, the EOP affects the rounding direction, as
shown in Table 2, where | denotes logical OR and &
denotes logical AND. In this table, f is the fraction being
rounded off, and odd is set if the truncated value of 10g ×
ANc ± B’ is odd. An increment is defined as adding 1 to
the value of the rounder input after truncating d digits.

As an example, assume A = 5,000,000,000,000,004 ×
100, B = 1,500,000,000,000,000 × 10-15, and RTA
rounding. The infinitely precise result for addition is
5,000,000,000,000,005.500000000000000 × 100

, which
rounds to 5,000,000,000,000,006 × 100. For subtraction,
it is 5,000,000,000,000,002.500000000000000 × 100, which
rounds to 5,000,000,000,000,003 × 100. BNc is rounded
by d3 = K – g = 15 digits before it is added to or
subtracted from 10g × ANc. If EOP is addition, B’ should
be 1, and if EOP is subtraction, B’ should be 2. Thus,
the rounding direction for B’ can vary based on EOP.

Rounding
Mode

Addition
Increment Condition

Subtraction
Increment Condition

RTZ Never f ≠ 0
RTA f ≥ ½ f > ½
RTE f > ½ | (f = ½ & odd) f > ½ | (f = ½ & odd)
RTP ~ANsign and f ≠ 0 ANsign and f ≠ 0
RTN ANsign and f ≠ 0 ~ANsign and f ≠ 0

Figure 5: Direct hardware for Case 3

Table 2: Increment conditions for Case 3

293

4. Combined BID Adder Design

Cases 1-3 have been presented to explain the ideas
behind the BID adder design. Figure 6 shows our
complete BID adder design, which shares components to
use less hardware, by adding multiplexers and control
logic. With intelligent scheduling and adding an
additional path through the rounder, only one multiplier
is needed. The multiplication used to push ANc to the
full decimal64 precision of p = 16 digits is performed
with the multiplier inside the rounder. To simplify
Figure 6, the multiplier is darkened to illustrate this
point.

The ability to reuse the multiplier in the DFP unit has
important effects. First, by adding logic around the
multiplier, many functions may be incrementally added
to a DFP solution at a modest area cost. Second, the
high utilization of the multiplier requires sophisticated
scheduling with several possibilities for optimization
including adding buffers, reservation stations, and
control logic. These details are not shown in Figure 6.

5. Results

To verify our algorithm, we modeled a BID adder in
Verilog with a separate path for each case and additional
steps for the cases that require a second pass through the
rounder. Though this design is too large to be practical,
we have successfully run over 10 million random test
vectors and over 300 directed corner testcases.

As a more realistic design, we have pipelined the
BID adder and combined the datapaths so that only one
64-bit multiplier is used. In this design, the multiplier
has two pipeline stages, the rounder has four pipeline
stages, and a flag is set in Case 3 when ZIC < 1015 to
indicate that the result must be recalculated. Except for
infrequent cases that need a second rounding or
recalculation, the latency is seven cycles for Cases 1 and
3, and three cycles for Case 2. In comparison, the
average latency of a 64-bit DFP addition using a BID
software library and executing on an EM64t Xeon 5100
Processor is 71 cycles when function call overhead is not
included [5].

We have performed preliminarily synthesis, testing,
and evaluation of our BID adder using Mentor Graphics
ModelSim, Synopsys Design Compiler, and the LSI
Logic Gflxp 0.11 micron CMOS Standard Cell Library.
In this technology, a 2-input NAND gate’s area is 8.08
µm2, and a fan-out-of-four (FO4) inverter’s delay is 55
ps. Our preliminary synthesis indicates the total area is
roughly 0.55 mm2 (68,459 NAND gate equivalents) and
the critical path delay is roughly 2.4 ns (44 F04 inverter
delays). We believe the delay can be improved

significantly through code rewriting, timing path
adjustments, further design optimizations, and deeper
pipelining.

For comparison, we synthesized a 2-stage pipelined
Synopsys DesignWare 64-bit by 64-bit multiplier,
named DW02_mult_2stage. The total area of this
multiplier is 0.41 mm2. By this measure, the multiplier
comprises roughly 70% of the total area of the pipelined
BID adder design. These results indicate that BID
addition and subtraction can be achieved with a modest
increase in area when hardware is shared with an
existing BFP multiplier. Since we are using a
synthesized multiplier, we are encouraged that efforts to
improve the multiplier will also likely enhance the BID
adder.

LUT 10K

K=0,...,18

Rounder

BNc

EOP

ANsign

digits to cut
(d3 or d1)

Qa[4:0]

EOP

Push digits
LUT (g)

B’

Zc ≥ 1016

or
Zc < 1015

Zc ≥ 1016

flag
Zc< 1015

flag

Multiplier

K

Add/Subtract and
Absolute Value

A*10K

ANc

Case2 MUX
Adder MUX

BNc

LUT MUX

K[9:0] Digits
Count

QI

sign

ZIsign

Determine
Sign

Cin MUX

cincutoff dig

ANsign

ZIsign
Result MUX

Zc

Swap

Ac Bc AexpBexp

| Aexp – Bexp |

ANexpBNc BNexp

sign

Asign Bsign

ANsign BNsign

K

Effective
Operation

Op

EOP

Digits
Count

ANc

Scheduling and Case
Control

Zc ≥ 1016 Zc< 1015

ctrl bits

ZIC

 Figure 6: Adder hardware design with
combined paths for Cases 1 - 3

294

6. Conclusion

We have presented the first design of a BID-based
DFP adder, which provides correctly rounded results for
adding and subtracting IEEE P754 decimal64 numbers.
The design demonstrates that BID addition and
subtraction can be effectively achieved in hardware. It
can be adapted to also support the IEEE P754 operations
of comparison, minimum, maximum, quantize, and
toIntergalValue, and it can be adapted for other operand
sizes. The design is promising in terms of area and
potential hardware reuse. Over 70% of the BID adder’s
area is due to a 64-bit binary multiplier, which can be
shared with a BFP multiplier and other BID operations.
In future research, we plan to investigate the design of
shared IEEE P754 BFP and DFP units.

Acknowledgements

The research presented in this paper is supported by a
grant from Intel Corporation. The authors are indebted to
Peter Tang, Marius Cornea, John Crawford, and John
Harrison for theoretical work supporting the design.

References

[1] M. F. Cowlishaw, “Decimal Floating-Point : Algorism for

Computers”, Proceedings of the 16th IEEE Symposium on
Computer Arithmetic, pp. 104-111, June 2003.

[2] IBM Corporation, “The ‘telco’ bench”, Available at
http://www2.hursley.ibm.com/decimal/ telco.html, 2002.

[3] M. F. Cowlishaw, “The decNumber Library”, Available at
www2.hursley.ibm.com/decimal/decnumber/pdf, 2006.

[4] Sun Microsystems, “BigDecimal (Java 2 Platforms SE
v1.4.0)”, URL: http://java.sun/com/products, Sun
Microsystems Inc., 2002.

[5] M. Cornea, C. Anderson, J. Harrison, P. Tang, E.
Schneider, C. Tsen, “A Software Implementation of the
IEEE 754R Decimal Floating-Point Arithmetic Using the
Binary Encoding Format”, IEEE International Sym-
posium on Computer Arithmetic, pp. 29-37, June 2007.

[6] M. Cornea, C. Anderson, C. Tsen, “Software Implementa-
tion of the IEEE 754R Decimal Floating-Point
Arithmetic”, Proceedings of the International Conference
on Software and Data Technologies, Portugal, September
2007.

[7] G. Bohlender, T. Teufel, “A Decimal Floating-Point Pro-
cessor for Optimal Arithmetic”, Computer Arithmetic: Sc-
ientific Computation and Programming Languages, ISBN
3-519-02448-9, B. G. Teubner Stuttgart, pp. 31-58, 1987.

[8] M. S.Cohen, T. E. Hull, V. C. Hamacher, “CADAC: A
Controlled-Precision Decimal Arithmetic Unit”, IEEE

Transactions on Computers, vol. C-32, no. 4, pp. 370-377
April 1983.

[9] H. Nikmehr, B. Phillips, C.-C. Lim, “Fast Decimal
Floating-Point Division”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 14, no 9,
pp. 951-961, September 2006.

[10] L.-K. Wang, M. J. Schulte, “Decimal Floating-Point
Division Using Newton-Raphson Iteration”, Proceedings
of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pp. 84-
95, September 2004.

[11] L.-K. Wang, M. J. Schulte, “Decimal Floating-Point
Square Root Using Newton-Raphson Iteration”
Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures, and
Processors, pp. 309-315, July 2005.

[12] S. Shankland, “IBM’s Power6 Gets Help with Math
Multimedia.” Available at http://news.zdnet.com/2100-
9584_22-6124451.html. Published on ZDNet News,
October 10, 2006.

[13] A. Y. Duale, M. H. Decker, H-G. Zipperer, M. Aharoni,
T. J. Bohizic, “Decimal floating-point in z9: An imple-
mentation and testing perspective”, IBM Journal of Re-
search and Development. vol. 51, no. 1/2, March 2007.

[14] J. Thompson, N. Karra, and M. J. Schulte, “A 64-bit
Decimal Floating-Point Adder”, IEEE Computer Society
Annual Symposium on VLSI, pp. 297-298, February 2004.

[15] L.-K. Wang and M. J. Schulte, "Decimal Floating-Point
Adder and Multifunction Unit with Injection-Based
Rounding," IEEE International Symposium on Computer
Arithmetic, pp. 56-68, June 2007.

[16] C. Tsen, M. J. Schulte, and S. Gonzalez-Navarro,
“Hardware Design of a Binary Integer Decimal-based
IEEE P754 Rounding Unit,” Proceedings of the IEEE
International Conference on Application-Specific
Systems, Architectures, and Processors, pp. 115-121, July
2007.

[17] Institute of Electrical and Electronic Engineers, “Draft
Standard for Floating-Point Arithmetic,”
http://754r.ucbtest.org/drafts/754r.pdf, October, 2006.

[18] P. Tang, “Binary-Integer Decimal Encoding for Decimal
Floating-Point,” Intel Corporation, Available at
http://754r.ucbtest.org/issues/decimal/bid_rationale.pdf,
July 2005.

[19] M. F. Cowlishaw, “Densely Packed Decimal Encoding,”
IEE Proceedings – Computers and Digital Techniques,
vol. 149, pp. 102-104, May 2002.

[20] M. Ercegovac, T. Lang, Digital Arithmetic, “Floating-
Point Representations, Algorithms, and Implementa-
tions,” Morgan Kaufmann Publishers, pp. 397-479, 2004.

[21] L.-K. Wang, C. Tsen, M. J. Schulte, D. Jhalani,
“Benchmarks and Performance Analysis for Decimal
Floating-Point Applications,” IEEE International
Conference on Computer Design, October 2007.

295

