Energy and Delay Improvement via Decimal Floating Point Units

Hossam A. H. Fahmy
Electronics and Communications Department
Cairo University

Egypt
Email: hfahmy @ stanfordalumni.org

Abstract

Interest in decimal arithmetic increased considerably in
recent years. This paper presents new designs for decimal
floating point (DFP) addition, multiplication, fused multiply-
add, division, and square root. It stresses the importance
of energy savings achieved by hardware implementations
of the IEEE standard for decimal floating point. To the
best of the authors knowledge, this is the first work to
discuss energy savings in DFP and the first to present
a hardware implementation of a fused multiply-add. Our
Newton-Raphson based divider is over three times faster
than the similar design previously reported.

1. Why decimal hardware?

Ten is the natural number base or radix for humans
resulting in a decimal number system while a binary system
is natural to computers. In the early days of computers, to
suite the data provided by the human users many machines
included circuits to perform operations on decimal numbers
only. Decimal numbers were used even for the memory
addressing and partitioning. In his seminal paper in 1959,
Buchholz [1] presented many persuasive arguments for using
binary representations instead of decimal for such machine
related issues as memory addressing.

Buchholz concludes that “a combination of binary and
decimal arithmetic in a single computer provides a high-
performance tool for many diverse applications. It may
be noted that the conclusion might not be the same for
computers with a restricted range of functions or with
performance goals limited in the interest of economy; the
difference between binary and decimal operation might well
be considered too small to justify incorporating both. The
conclusion does appear valid for high-performance com-
puters regardless of whether they are aimed primarily at
scientific computing, business data processing, or real-time
control.”

Due to the limited capacities of the first integrated circuits
in the 1960s and later years, most machines adopted the
use of dedicated circuits for binary numbers and dropped
decimal numbers. With the much higher capabilities of

Ramy Raafat, Amira M. Abdel-Majeed, Rodina Samy,

Tarek ElDeeb, Yasmin Farouk
SilMinds
Smart Village, B115, 12577
Giza, Egypt
Email: ramy.raafat@silminds.com

current processors and the large increase in financial and
human oriented applications over the Internet, decimal is
regaining its due place. The largest change in the recent
revision of the IEEE standard for floating point arithmetic [2]
is the introduction of the decimal floating point formats and
the associated operations. Whether in software or hardware,
a standard to represent the decimal data and determine
the manner of handling exceptional cases in operations is
important.

Simple decimal fractions such as 1/10 which might
represent a tax amount or a sales discount yield an infinitely
recurring number if converted to a binary representation.
Hence, a binary number system with a finite number of bits
cannot accurately represent such fractions. When an approx-
imated representation is used in a series of computations, the
final result may deviate from the correct result expected by
a human and required by the law [3], [4]. One study [5]
shows that in a large billing application such an error may
be up to $5 million per year.

Banking, billing, and other financial applications use
decimal extensively. Such applications may rely on a low-
level decimal software library or use dedicated hardware
circuits to perform the basic decimal arithmetic operations.
Two software libraries were proposed to implement the
decimal formats of the new IEEE standard: one using the
densely packed decimal encoding [6] and the other using
the binary encoded decimal format [7]. Hardware designs
were also proposed for addition [8], multiplication [9], [10],
division [11], [12], square root [13], as well as complete
processors [14].

A benchmarking study [15] estimates that many financial
applications spend over 75% of their execution time in
Decimal Floating Point (DFP) functions. For this class of
applications, the speedup resulting from the use of a fast
hardware implementation versus a pure software imple-
mentation ranges from a factor of 5.3 to a factor of 31.2
depending on the specific application running. This speedup
is for the complete application including the non-decimal
parts of the code. According to our knowledge, all the
previous research focused only on the time saved. However,
we see that the savings in energy are even more important.
Our own preliminary estimates indicate that energy savings

for the whole application due to the use of dedicated
hardware instead of a software layer are of the same order
of magnitude as the time savings.

Gonzalez and Horowitz [16] argue that the process nor-
malized Energy Delay Product (EDP) is the most suitable
metric for architectural evaluations. This metric clearly in-
dicates the architectural improvements that contribute the
most to both performance and energy efficiency. A hardware
implementation for DFP units is a definite winner in this
case since it gives from two to three orders of magnitude
improvement in EDP as a conservative estimate.

The following section explains our own designs for the
DFP units and compares them to other implementations.
Then, section 3 presents our preliminary energy results and
its implications on real machines. Finally, section 4 presents
the conclusions.

2. DFP hardware units

Our goal is to provide functionally correct, standard
compliant, high performance hardware units for the ma-
jor decimal arithmetic operations listed in the standard,
namely: addition/subtraction, multiplication, fused multiply-
add (FMA), division, and square root. In this paper, we
report our designs implementing all these operations for the
decimal encoded decimal64 and decimall28 formats of the
standard. (Currently, the FMA supports decimal64 only but
is easily extendible to decimal128.)

All the units support seven rounding directions. Four of
these are directed roundings: toward zero (RZ), away from
zero (RA), toward plus infinity (RP), and toward minus
infinity (RM). While the other three round to nearest but
handle the tie case differently: ties to even (RNE), ties away
from zero (RNA), and ties to zero (RNZ). The standard
mandates the provision of RZ, RP, RM, RNE, RNA in any
compliant decimal implementation. The other two (RA and
RNZ) are used in some applications and defined in the
BigDecimal library [17].

The proof of correct functionality and full standard com-
pliance of floating point units is a very complicated task [18].
To get around this and still provide robust designs, compa-
nies accumulated over the years large bodies of test cases
to check the critical conditions. Recently, designers used
formal verification methods [19] as an alternative approach
to ensure the quality and correctness of their units. For
the case of DFP, the verification team of IBM developed
a software engine [20] that generates test cases based on
a description of the constraints in the standard. We built a
free tool [21] to parse those test cases and produce output
files with test vectors suitable for direct use with hardware
simulators. Each of our designs is simulated using those
test vectors as well as a large number of random cases
to check its correct functionality in all the seven rounding

| Addend and augend

!

Convert to excess-3

! !

P and G

! !

Kogge-Stone tree

Convert to BCD

Digit addition

Correct & increment

1 Sum 1 Sum+1

Carry signals Mux

¢ Result

Figure 1. Fast multi-digit decimal adder

directions and the correct generation of the required flags
for exceptional cases according to the standard.

2.1. Decimal adder

For each of the decimal64 and decimall28, we designed
two different adder implementations, one for high speed and
the other for low area. After the correct alignments of the
significands based on the exponents and leading zeros, the
core of all our DFP adders uses a new fast decimal adder
based on a Kogge-Stone prefix tree shown in Fig. 1. In
this adder, both the addend and augend are converted to
regular Binary Coded Decimal (BCD) and excess-3 encod-
ings simultaneously. The sum of two BCD digits requires a
correction only if it exceeds nine. This comparison with nine
delays the generation of the corresponding carry signal. In
excess-3, the sum digit requires a correction (to subtract 3)
if it is nine or less and a different correction (to add 3) if
it is greater than nine. However, the correct carry signal is
generated quickly. Our adder combines the advantages of
both encodings. It uses the excess-3 encoding to get the
propagate and generate signals that are fed into the Kogge-
Stone tree to quickly get the carry signal corresponding to
each digit position in the significand. In parallel, it produces
the sum and incremented sum of the BCD digits in each
position. The carry signals then select the correct result for
each position.

Furthermore and in contrast to the previous designs [8],
our DFP adders generate the sticky bit in parallel with the
alignment shifter then use that bit in an injection based
rounding [8].

2.2. Decimal multiplier

Our multiplier [10] contains two main paths: significand
path to generate the product’s significand, and the exponent
path to generate the product’s exponent and the correspond-
ing flags. The significand path relies on a fully parallel

decimal multiplier [22] to generate the partial products in
parallel and reduce them to two vectors (sum and carry)
using a carry save addition tree.

These two vectors are added using our new fast decimal
carry propagation adder of Fig. 1. The exponents of both
operands and the count of leading zeros determine the
required amount to shift the result’s significand into its
correct place then it is rounded.

2.3. Decimal fused multiply add

Our decimal FMA implements the operation +(a X b) +¢
with a single final rounding. The FMA was introduced
as a required operation in the revised standard [2]. The
single rounding is not the only difference between FMA
and a multiplication followed by addition. The exceptional
cases are also different since the standard mandates that no
underflow, overflow, or inexact exception arise due to the
multiplication, but only due to the addition.

The core of the FMA uses a significand path similar to
that of our multiplier explained above and introduces the
operand c after any required alignment as an additional
partial product in the reduction tree. For p digits per operand,
the product a x b has 2p digits and operand ¢ may be
shifted either to its right or left for alignment. Digits shifted
to the right of the product affect the sticky bit generation.
Otherwise, if operand ¢ coincides with part of the product
or is shifted to its left, we use a 3p digits wide final adder
to get the result which is later rounded.

2.4. Decimal divider and square root

Our design for the divider and square root uses a modified
Newton-Raphson method [11], [13] to generate the initial
approximation then iterate on the equation z;11 = z;(2 —
bxz;) to find the reciprocal of b or z;41 = z;(3 — bx?)/2
to find the reciprocal square root of b. Our contribution
is the use of an optimized fully parallel FMA unit with a
fixed addend to generate the reciprocal and the quotient in
the case of division or the reciprocal square root for the
square root. Moreover, we keep all the intermediate results
in a redundant form to speed up the operation. Hence, the
regular multiplication circuit is modified to take as input
and produce as output a redundant form. Furthermore, the
proposed designs use a new and fast rounding scheme.

The rounding algorithm presented by Wang and
Schulte [11] truncates the quotient to p + 1 digits for a
significand of precision p then adds 10~ (*1 followed by
a final truncation to p digits. This scheme may produce
an incorrect result in some cases. Our algorithm truncates
the quotient to p digits and checks the actual remainder to
decide on the correct rounding. Table 1 presents an example
showing the difference when a = +8080699100134968,

Table 1. Example of incorrect rounding.

iteration

Our algorithm

Algorithm [11]

z1=120(2 — bxo)
xo=x1(2 — bx1)
q = axs

1.097 924 807 006 738 06
1.097 924 807 007 331 24
8.871 999 999 999 999 87

1.097924 807 006 738 06
1.097924 807007 331 24
8.871 999 999 999 999 87

truncate keeping p digits

truncate at p + 1 then

increment

q 8.871999999999999 [8.871999999 999 999 9
remainder error is 1 ulp, |truncate
increment

q 8.872 8.871999 999 999 999
correct incorrect

b = +910809186219000, xop =
q=a/b= +8.872.

For the decimal64 format, the Digit-Recurrence di-
vider implementation [12] has an estimated total delay of
680 Fanout of 4 (FO4) while our design gives 734 FO4,
i.e. only about 8% difference. For decimall28, the digit-
recurrence technique doubles the delay. However, the use of
the Newton-Raphson technique in our divider leads to much
better performance since only a single additional iteration is
needed. Since the implementation of Wang and Schulte [11]
uses a serial multiplier, its delay estimate for decimal64 is
2300 FO4, more than three times the delay of our proposal.

+1.097924, and exact

3. Experimental energy evaluation

To verify our designs in real hardware, we synthesized
them on an Altera Cyclone II FPGA (field programmable
gate array) development kit. On the FPGA, our hardware
connects to a NIOS II processor as a slave memory mapped
component on the Avalon bus. Due to the limitation of this
configuration, the operands are transmitted to our designs
on several clock cycles. This connection, however, models
how an existing architecture may be retrofit with a DFP
acceleration card. A much higher performance is expected
from a direct implementation within a processor core.

This system runs the telco benchmark [5] in two modes:
a pure ‘software’ mode based on the DecNumber library [6]
and a ‘hardware’ mode. In this latter mode, when a decimal
operation is needed the NIOS processor sends the operands
to our hardware on the bus then reads the result. Table 2
shows the statistics for the number of clock cycles needed in
the million numbers of the benchmark. Using the PowerPlay
Early Power Estimator tool of Altera, the estimated average
power per instruction is 109 mW when the FPGA runs at its
default frequency of 50 MHz. Hence, the table also shows
the estimated average energy in each case.

These preliminary results indicate that a hardware ac-
celeration card would run 23 times faster than software
on average which gives an improvement in energy-delay
product of over 500. Explained differently, a user who
spends just 1 minute in decimal calculations out of every

Table 2. Clock cycles and energy for HW versus SW

HW SW
Cycles Energy (uJ) | Cycles Energy (uJ)
max 2591 5.65 | 52421 114.28
min 995 2.17 12870 28.06
average 1249 2.72 | 29004 63.23
StdDev 226 0.49 2256 4.92
median 1444 3.15 | 29285 63.84

500 minutes on the computer benefits from DFP acceler-
ation. Clearly, an architecture incorporating DFP hardware
within the processor will see even greater gains.

4. Conclusions

To the best of the authors’ knowledge, this is the first
paper to indicate the energy savings resulting from hardware
implementations of decimal floating point operations. Using
the energy delay product as a metric, a hardware implemen-
tation is beneficial even if the user runs decimal applications
only rarely.

This work also reports the first hardware implementation
of the FMA and the fastest hardware DFP divider using
Newton-Raphson iterations.

References

[1] W. Buchholz, “Fingers or fists? (the choice of decimal or
binary representation),” Communications of the ACM, vol. 2,
no. 12, pp. 3-11, Dec. 1959.

[2] “IEEE standard for floating-point arithmetic,” New York, NY,
Aug. 2008, (IEEE Std 754-2008).

[3] M. FE. Cowlishaw, “Decimal floating-point: algorism for
computers,” in [16th IEEE Symposium on Computer
Arithmetic: ARITH-16 2003: proceedings: Santiago de
Compostela, Spain, 15-18 June, 2003.

[4] European Commission, The Introduction of the Euro and
the Rounding of Currency Amounts, European Commission
Directorate General II Economic and Financial Affairs,
Brussels, Belgium, 1997.

[5] M. F. Cowlishaw, “The ‘telco’ benchmark,” World-Wide
Web document., Hursley, UK, 2002. [Online]. Available:
http://speleotrove.com/decimal/telco.html

[6] M. Cowlishaw, The decNumber C library, 1BM
Corporation, Apr. 2007, version 3.40. [Online]. Available:
http://speleotrove.com/decimal/

[7] M. Cornea, C. Anderson, J. Harrision, P. Tang, E. Schneider,
and C. Tsen, “A software implementation of the IEEE 754r
decimal floating-point arithmetic using the binary encoding,”
in Proceedings of the IEEE International Symposium on
Computer Arithmetic, 25-27 June, 2007, Montpellier, France.

[8] L.-K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam,
“Hardware designs for decimal floating-point addition and
related operations,” IEEE Transactions on Computers, vol. 58,
no. 3, pp. 322-335, Mar. 2009.

[9] M. A. Erle, M. J. Schulte, and B. J. Hickmann, “Decimal
floating-point multiplication via carry-save addition,” in Pro-
ceedings of the IEEFE International Symposium on Computer
Arithmetic, 25-27 June, 2007, Montpellier, France.

[10] R. Raafat, A. M. Abdel-Majeed, R. Samy, T. ElDeeb,
Y. Farouk, M. Elkhouly, and H. A. H. Fahmy, “A decimal
fully parallel and pipelined floating point multiplier,” in
Forty-Second Asilomar Conference on Signals, Systems, and
Computers, Asilomar, California, USA, Oct. 2008.

[11] L.-K. Wang and M. J. Schulte, “A decimal floating-point
divider using Newton—Raphson iteration,” Journal of VLSI
Signal Processing, vol. 49, no. 1, pp. 3-18, Oct. 2007.

[12] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal
floating-point division,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 14, no. 9, pp. 951—
961, Sep. 2006.

[13] L.-K. Wang and M. J. Schulte, “Decimal floating-point
square root using Newton—Raphson iteration,” in 16th IEEE
International Conference on Application-Specific Systems,
Architectures, and Processors: ASAP 2005: 23-25 July 2005,
Samos, Greece.

[14] E. M. Schwarz, J. S. Kapernick, and M. E. Cowlishaw, “Deci-
mal floating-point support on the IBM system z10 processor,”
IBM Journal of Research and Development, vol. 53, no. 1,
2009.

[15] L.-K. Wang, C. Tsen, M. J. Schulte, and D. Jhalani, “Bench-
marks and performance analysis of decimal floating-point
applications,” IEEE, pp. 164-170, 2007.

[16] R. Gonzalez and M. Horowitz, “Energy dissipation in gen-
eral purpose microprocessors,” IEEE Journal of Solid-State
Circuits, vol. 31, no. 9, pp. 1277-1284, Sep. 1996.

[17] Sun Microsystems, BigDecimal (Java 2 Platform SE v1.4.0),
Sun Microsystems, Mountain View, CA, USA, 2002.
[Online]. Available: http://java.sun/com/products

[18] D. M. Russinoff, “A mechanically checked proof of IEEE
compliance of the floating point multiplication, division
and square root algorithms of the AMD-K77* processor,”
LMS Journal of Computation and Mathematics, vol. 1, pp.
148-200, 1998.

[19] C. Kern and M. R. Greenstreet, “Formal verification in
hardware design: a survey,” ACM Transactions on Design
Automation of Electronic Systems., vol. 4, no. 2, pp. 123-193,
Apr. 1999.

[20] “Floating point test suite.” [Online]. Available: http:
//www.haifa.ibm.com/projects/verification/fpgen/ieeets.html

[21] “Silminds decimal parsing tool.” [Online].
Available: http://www.silminds.com/index.php?option=com_
content&task=view&id=10&Itemid=37

[22] A. Vazquez, E. Antelo, and P. Montuschi, “A new
family of high-performance parallel decimal multipliers,” in
Proceedings of the 18th IEEE Symposium on Computer
Arithmetic, 25-27 June, 2007, Montpellier, France.

