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Chapter 1

Numeric Data Representation

Arithmetic is the science of handling numbers and operating on them. This book is about the
arithmetic done on computers. To fulfill its purpose, there is a need to describe the computer
representations of the different numbers that humans use and the implementation of the basic
mathematical operations such as addition, subtraction, multiplication and division. These oper-
ations can be implemented in software or in hardware. The focus of this volume is to introduce
the hardware aspects of computer arithmetic. We sprinkled the text freely with examples of
different levels of complexity as well as exercices. The exercises are there to be attempted before
turning to the solutions at the end of the book. The solutions often expand the concepts further
but will not benefit much unless you try to work through the exercises first. At the end of each
chapter, there are further problems that are left for the student to solve.

After finishing the book, the reader should be familiar with the fundamentals of the field and
able to design simple logic circuits to perform the basic operations. The text often refers to
further readings for advanced material. We believe that such a presentation helps introduce
new designers to the advanced parts of the field. This presentation style also does not get into
too many details and gives a general background for those in other specialities such as computer
architecture, VLSI design, and numerical analysis who might be interested to strengthen their
knowledge of computer arithemtic.

In fact, if one contemplates the design of large digital integrated circuits one finds that it is
mostly composed of four main entities:

Memories are used for temporary storage of results (registers), for reducing the time delay of
retrieving the information (caches), or as the main store of information (main memories).

Control logic blocks handle the flow of information and assure that the circuit performs what
is desired by the user.

Datapath blocks are the real engine that performs the work. These are mainly circuits per-
forming either some arithmetic or logic operation on the data.

Communications between all the elements is via wires usually arranged in the form of buses.

1



2 CHAPTER 1. NUMERIC DATA REPRESENTATION

In our following discussions, we mainly focus on the datapath and see how it interacts with the
three other elements present in digital circuits.

A good optimization of the arithmetic blocks results in an improved datapath which directly
leads to a better overall design. Such an optimization might be to improve the speed of operation,
to lower the power consumption, to lower the cost of the circuit (usually related to the number
of gates used or the area on the chip), or to improve any other desired factor. As the different
possibilities for implementing the arithmetic operations are explained, we will see that the
designer has a large array of techniques to use in order to fulfill the desired outcome. A skilled
designer chooses the best technique for the problem at hand. We hope to help future designers
make these informed choices by presenting some simple tools to measure the different factors
for the options that they evaluate.

1.1 Infinite aspirations and finite resources

Using computers to perform arithemtic introduces some constraints to what can be done. The
main one is the limit on the number of digits used. This limitation translates into the represen-
tation of only a finite set of numbers. All other numbers from the set of real numbers are not
representable. Some of the effects of this finitude are clear. Definitely any irrational number
with an infinite number of digits after the fractional point is not representable. The same case
applies for rational numbers whose representation as a fractional number is beyond the number
of digits available. For example, if we assume a decimal number system with five digits after
the fractional point then the number 1234567/500000 = 2.469134 is not represented exactly.
Increasing the number of digits used to six may help to include an accurate representation for
that rational number, however, the numbers 1/7,

√
2, e and π are still not represented.

This finitude also means that there is an upper bound on the numbers that are representable. If
an arithmetic operation has a result beyond this upper limit a condition called overflow occurs
and either the hardware or the software running on top of it must handle the situation differently
to get a meaningful result. Similarly, a lower bound on the minimum absolute value of a fraction
exist and a condition called underflow occurs if an arithmetic operation has a result below this
limit.

Said differently, the primary problem in computer arithmetic is the mapping from the infinite
number systems of mathematics to the finite representational capability of the machine. Finitude
is the principal characteristic of a computer number system. Almost all other considerations are
a direct consequence of this finitude.

The common solution to this problem is the use of modular arithmetic. In this scheme, every
integer from the infinite number set has one unique representation in a finite system. However,
now a problem of multiple interpretations is introduced—that is, in a modulo 8 system, the
number 9 is mapped into the number 1. As a result of mapping, the number 1 corresponds in
the infinite number system to 1, 9, 17, 25, etc.

As humans originaly used numbers to count, we start by the natural numbers representing
positive integers and see the effect of finitude and modular arithmetic on such numbers. General
integer numbers including the representation of negative numbers follow. The presentation of
the basic arithmetic operations on integers is given next. Once these fundamentals are laid out,
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we refer to further readings that is related. The following chapter deals with the representations
of real numbers and the operations involving them.

1.2 Natural Numbers, Finitude, and Modular Arithmetic

The historical need for numbers and their first use was for counting. Even nowadays, the child’s
numerical development starts with counting. The counting function is accomplished by the
infinite set of numbers 1, 2, 3, 4, . . . , which are described as natural numbers. These numbers
have been used for thousands of years, and yet only in the 19th century were they described
precisely by Peano (1858–1932). The following description of Peano’s postulates is adapted from
Parker (3).

Postulate 1: For every natural number x, there is a unique natural number which we call the
successor of x and which is denoted by s(x).

Postulate 2: There is a unique natural number which we call 1.

Postulate 3: The natural number 1 is not the successor of any natural number.

Postulate 4: If two natural numbers x and y are such that s(x) = s(y), then x = y.

Postulate 5: (Principle of Mathematical Induction): Let M be a subset of the natural num-
bers with the following properties:

(a) 1 is a member of M;

(b) For any x that belongs to M, s(x) also belongs to M.

Then M is the set of natural numbers.

Later on, we will show that all other number systems (negative, real, rational) can be described
in terms of natural numbers. At this point, our attention is on the problem of mapping from
the infinite set to a finite set of numbers.

Garner (4) show that the most important characteristic of machine number systems is finitude.
Overflows, underflows, scaling, and complement coding are consequences of this finitude.

On a computer, the infinite set of natural numbers needs to be represented by a finite set of
numbers. Arithmetic that takes place within a closed set of numbers is known as modular
arithmetic. Brennan (5) provides the following examples of modular arithmetic in everyday life.
The clock tells time in terms of the closed set (modules) of 12 hours, and the days of the week
all fall within modulo 7. If the sum of any two numbers within such a modulus exceeds the
modulus, only the remainder number is considered; e.g., eight hours after seven o’clock, the time
is three o’clock, since

(8 + 7) modulo 12 = remainder of
15
12

= 3.

Seventeen days after Tuesday, the third day of the week, the day is Friday, the sixth day of the
week, since

(17 + 3) modulo 7 = remainder of
20
7

= 6.
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In modular arithmetic, the property of congruence (having the same remainder) is of particular
importance. By definition (6):

If µ is a positive integer, then any two integers N and M are congruent,
modulo µ, if and only if there exists an integer K such that

N −M = Kµ.

Hence,
Nmodµ ≡Mmodµ,

where µ is called the modulus.

Informally, the modulus is the quantity of numbers within which a computation takes place, i.e.
(0, 1, 2, 3, . . . , µ− 1.)

Example 1.1 If µ = 256, M = 258, and N = 514 are M and N congruent modµ?
Solution: The modulo operation yields

514mod256 = 2mod256

and
258mod256 = 2mod256,

i.e., they are congruent mod256, and

514− 258 = 1× 256,

i.e., K = 1.

1.2.1 Properties

Congruence has the same properties with respect to the operations of addition, subtraction, and
multiplication, or any combination.

If N ′ = Nmodµ and M ′ = Mmodµ, then

(N +M)modµ = (N ′ +M ′)modµ
(N −M)modµ = (N ′ −M ′)modµ
(N ×M)modµ = (N ′ ×M ′)modµ

Example 1.2 If µ = 4, N = 11 and M = 5 check the three operations.
Solution: Since (11)mod4 = 3 and (5)mod4 = 1, we get

(3 + 1)mod4 = (11 + 5)mod4 ≡ 0,
(3− 1)mod4 = (11− 5)mod4 ≡ 2, and
(3× 1)mod4 = (11× 5)mod4 ≡ 3.
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?=⇒ Exercise 1.1 Can you prove that if N ′ = Nmodµ and M ′ = Mmodµ, then
(N [+,−,×]M)modµ = (N ′[+,−,×]M ′)modµ where [+,−,×] means any of the
addition, subtraction, or multiplication operations?

Negative numbers pose a small difficulty. If N is negative while µ is positive in the operation
Nmodµ then several conventions apply. Depending on how it is defined,

−7mod3 ≡ −1 or + 2,

since
−7
3

= −2 quotient, − 1 remainder

or
−7
3

= −3 quotient, + 2 remainder.

For modulus operations, the usual convention is to choose the least positive residue (including
zero). Unless otherwise specified, we will assume this convention throughout this book, even if
we are dividing by a negative number such as (−7)/(−3) = +2. That is,

−7
−3

= +3 quotient, + 2 remainder.

In terms of conventional division, this is surprising, since one might expect

−7
−3

= +2 quotient, − 1 remainder.

We will distinguish between the two division conventions by referring to the former as modulus
division and the latter as signed division. In signed division, the magnitude of the quotient is
independent of the signs of the divisor and dividend. This distinction follows the work of Warren
and his colleagues (7).

?=⇒ Exercise 1.2 For the operation of integer division ±11÷±5 find the quotient
and remainder for each of the four sign combinations

(a) for signed division, and

(b) for modulus division.

The division operation is defined as
a

b
= q +

r

b
,

where q is the quotient and r is the remainder. But even the modulus division operation does
not extend as simply as the other three operations; for example,

3
1
6= 11

5
mod4.

Nevertheless, division is a central operation in modular arithmetic. It can be shown that for
any modulus division M/µ, there is a unique quotient-remainder pair, and the remainder has
one of the µ possible values 0, 1, 2, . . . , µ− 1 which leads to the concept of residue class.

A residue class is the set of all integers having the same remainder upon division by the modulus
µ. For example, if µ = 4, then the numbers 1, 5, 9, 13 . . . are of the same residue class. Obviously,
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there are exactly µ residue classes, and each integer belongs to one and only one residue class.
Thus, the modulus µ partitions the set of all integers into µ distinct and disjoint subsets called
residue classes.

Example 1.3 If µ = 4, find the residue classes.
Solution: In this case, there are four residue classes which partition the integers:

{. . . , −8, −4, 0, 4, 8, 12, . . .}
{. . . , −7, −3, 1, 5, 9, 13, . . .}
{. . . , −6, −2, 2, 6, 10, 14, . . .}
{. . . , −5, −1, 3, 7, 11, 15, . . .}

.

If we are not dealing with individual integers but only with the residue class of which the integer
is a member, the problem of working with an infinite set is reduced to one of working with a
finite set. This is a basic principle of number representation in computers.

Before we leave these points, let us check that you understand them thoroughly.

?=⇒ Exercise 1.3 If ÷m denotes the modular division so that N÷mD result in qm
and rm as the quotient and remainder while ÷s (with qs, rs) denotes signed
division, find qs and rs in terms of qm and rm.

?=⇒ Exercise 1.4 Another type of division is possible; this is called “floor divi-
sion.” In this operation, the quotient is the greatest integer that is con-
tained by (is less than or equal to) the numerator divided by the denomi-
nator (note that minus 3 is greater than minus 4). Find qf , rf in terms of
qm, rm.

1.2.2 Extending Peano’s Numbers

Peano’s numbers are the natural integers 1, 2, 3, . . ., but in real life we deal with more numbers.
The historic motivation for the extension can be understood by studying some arithmetic oper-
ations. The operations of addition and multiplication (on Peano’s numbers) result in numbers
that are still described by the original Peano’s postulates. However, subtraction of two numbers
may result in negative numbers or zero. Thus, the extended set of all integers is

−∞, . . . ,−2,−1, 0, 1, 2, . . .+∞,

and natural integers are a subset of these integers. The operation of division on integers may
result in noninteger numbers. By definition, such a number is a rational number, which is repre-
sented exactly as a ratio of two integers. However, if the rational number is to be approximated
as a single number, an infinite sequence of digits may be required for such a number, for ex-
ample, 1/3 = 0.33333 . . .. Between any two rational numbers, however small but finite their
difference, lies an infinite number of other rational numbers and infinitely more numbers which
cannot be expressed as rationals. We call these latter numbers real numbers and they include
such constants as π and e. Real numbers can be viewed as all points along the number axis
from −∞ to +∞.

Real numbers need to be represented in a machine with the characteristics of finitude. This is
accomplished by approximating real numbers and rational numbers by terminating sequences
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of digits. Thus, all numbers (real, rational, and integers) can be operated on as if they were
integers (provided scaling and rounding are done properly). We devote the remainder of this
chapter to integers. Other numbers are discussed in subsequent chapters.

1.3 Integer Representation

The data representation to be described here is a weighted positional representation. The
development for a weighted system was a particular breakthrough in ancient man’s way of
counting. While his hearthmate was simmering clams, and children demanding equal portions,
to count seventeen shells he may have counted the first ten and marked something in the sand
(to indicate 10), then counted the remaining seven shells. If his mark on the sand happened to
look like 1, he could easily have generated the familiar (decimal) weighted positional number
system.

The decimal system is also called base-10 system and its digits range from 0 to 9, i.e. from
0 to 10 − 1. For the decimal system, 10 is called the radix and the digits usually go up to the
radix minus one. The same idea applies for other systems. For example, in a binary (base-2)
system the digits usually are 0 or 1, in a base-8 system the digits are usually 0 to 7. A number
N with n digits (dn−1, · · · , d0 in the radix β) is written as dn−1 dn−2 dn−3 · · · d1 d0. The d0

represents the units or β0 values, the d1 represents the β1 values, the d2 represents the β2 values
and so on. The total value of N is

∑i=n−1
i=0 diβ

i. Such a system is called a weighted positional
number system since each position has a weight and the digits are multiplied by that weight.
This system was invented in India and developed by the Muslims who called it hisab al-hind
Y�

	
Jê
�
Ë @

�
H. A

�
�k� (8) or Indian reckoning in English.

That Indo-Arabic system was later introduced to Europe through the Islamic civilization in
Spain and replaced the Roman numerals. That is the reason why the numerals 0 to 9 are known
in the west as the Arabic numerals. A simple idea links the Roman system to the much older
Egyptian system: the units have a symbol used to count them and that symbol is repeated to
count for more than one. A group of five units has a different symbol. Ten units have another
symbol, fifty units have yet another symbol and so on. This Roman system only survives today
for special applications such as numbering the chapters of a book but is not in much use in
arithmetic. Another number system that existed in history is the Babylonian system which was
a sexadecimal system and it survives today in the way we tell the time by dividing the hour
into sixty minutes and the minute into sixty seconds. Chapter 3 discusses the advantages gained
from some alternative number systems.
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Example 1.4 In the familiar decimal system, the base is β = 10, and the 4-digit
number 1736 is:

1736 = 1× 103 + 7× 102 + 3× 101 + 6.

In the binary system, β = 2, and the 5-digit number 10010 is:

1× 24 + 0× 23 + 0× 22 + 1× 2 + 0 = 18 (base 10).

The leading digit, dm, is the most significant digit (MSD) or the most significant bit (MSB) for
binary base. Similarly, d0 is the least significant digit or bit—(LSD or LSB) respectively.

The preceding positional number system does not include a representation of negative numbers.
Two methods are commonly used to represent signed numbers (4):

Sign plus magnitude: Digits are represented according to the simple positional number sys-
tem; an additional high-order symbol represents the sign. This code is natural for humans,
but unnatural for a modular computer system.

Complement codes: Two types are commonly used; namely, radix complement code (RC)
and diminished radix complement code (DRC). Complement coding is natural for com-
puters, since no special sign symbology or computation is required. In binary arithmetic
(base = 2), the RC code is called two’s complement and the DRC is called ones’ comple-
ment.

1.3.1 Complement Coding

Suppose for a moment that we had a modular number system with modulus 2µ. We could
designate numbers in the range 0 to µ−1 as positive numbers similar to the case of our previous
modulus µ system, and treat numbers µ to 2µ− 1 as negative, since they lie in the same residue
class as numbers −(µ) to −1:

−1mod2µ = (2µ− 1)mod2µ;
−(µ)mod2µ = (2µ− µ)mod2µ = µmod2µ.

Mapping these negative numbers into large positive residues is called complement coding. We
deal with 2µ − x rather than −x. However, because both representations are congruent, they
produce the same modular results.

Of course, “overflows” are a problem. These are results that appear as correct representations
mod2µ, but are incorrect in our mapped modµ system. If two positive or two negative numbers
a and b have sum c, which exceeds |µ|, overflow occurs and this must be detected. The decision
to actually use the RC or the DRC makes the implementation details differ slightly.

1.3.2 Radix Complement Code—Subtraction Using Addition

We start the discussion by supposing that a number N is a positive integer of the form

N = dm · βm + dm−1 · βm−1 + · · ·+ d0.
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?=⇒ Exercise 1.5 If the digits di ∈ {0, 1, · · · , β−1}, prove that the maximum value
N may assume is βm+1 − 1.

Now, suppose we wish to represent −N , a negative m + 1 digit number. We define the radix
complement of N as

RC(N) = βm+1 −N.

Clearly, the RC(N) is a nonnegative integer.

For ease of representation, let us assume that β is even and let n = m+1; then RC(N) = βn−N .
Suppose P and N are n-digit numbers and we wish to compute P − N using the addition
operation. P and N may be either positive or negative numbers, as long as

βn

2
− 1 ≥ P, N ≥ −β

n

2
.

In fact, P −N is more accurately (P −N)modβn , and

(P −N)modβn = (Pmodβn −Nmodβn)modβn .

However, if we replace −N with βn −N the equality is unchanged. That is, by taking

(Pmodβn + (βn −N)modβn) modβn ,

we get
Pmodβn −Nmodβn .

The computation of βn −N is relatively straightforward.

?=⇒ Exercise 1.6 Prove that RC(N) = βn − N (which is represented by
RC(N)mRC(N)m−1 · · ·RC(N)0) is given by this simple algorithm:

1. Scan the digits of N from the least significant side till you reach the
first non-zero digit. Assume this non-zero digit is at position i+ 1.

2. The digits of RC(N) are given by

RC(N)j =

 0 0 ≤ j ≤ i
β − di+1 j = i+ 1
β − 1− dj i+ 2 ≤ j ≤ m

i.e., the first non-zero digit is subtracted from β and all the other digits
at higher positions are subtracted from β − 1.

For example, in a three-position decimal number system, the radix complement of the positive
number 245 is 1000− 245 = 755. In this system, β = 10, n = 3 and, according to our definition,
755 represents a negative number since 755 > βn/2.

This presentation of radix complement illustrates that by properly scaling the represented pos-
itive and negative numbers about zero, no special treatment of the sign is required. In fact, the
most significant digit indicates the sign of the number. In the base 10 system, the digits 5, 6,
7, 8, 9 (in the most significant position) indicate negative numbers; i.e., three decimal digits
represent numbers from +499 to −500.
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Example 1.5 If P = +250 and N = +245 compute P − N using the radix comple-
ment.
Solution:

250 ⇒ 250
−245 +755

1005 mod1000 ≡ 5

?=⇒ Exercise 1.7 In the specific case of the binary system, a most significant
digit of 1 is an indication of negative numbers. A nice property follows
for the two’s complement binary system, If a binary number N is rep-
resented in two’s complement form by the bit string dmdm−1 · · · d1d0, then
N = (−1)dm2m +

∑m−1
i=0 di2i. Can you prove it?

For the familiar case of even radix, a disadvantage of the radix complement code is the asymmetry
around zero; that is, the number of negative numbers is greater by one than the number of
positive numbers. However, this shortcoming is not a serious one. If the number zero is viewed
as a positive number then there are as many positive numbers as there are negative numbers!

Although the operation of finding the radix complement is quite simple as shown in exercise 1.6
it is a sequential operation. We scan the digits in sequence and hence it takes time to perform it.
The greatest disadvantage of the two’s complement number system is this difficulty in converting
from positive to negative numbers, and vice versa. This difficulty is the motivation (9) for
developing the diminished radix complement code.

1.3.3 Diminished Radix Complement Code

By definition, the diminished radix complement of the previously defined number N , DRC(N)
is βn−1−N . In a decimal number system, this code is called nines’ complement, and in binary
system, it is called ones’ complement.

The computation of the diminished radix complement (DRC) is simpler than that of the radix
complement. Since, if Nmodβn = dn−1dn−2 . . . d0, then for all di(n− 1 ≥ i ≥ 0)

DRC(d)i = β − 1− di.

Since β − 1 is the highest valued symbol in a radix β system, no borrows can occur and the
DRC digits can be computed independently.

Example 1.6 To verify their independence, calculate the digits representing the di-
minished radix complement of N = +245 starting from the most significant side.
Solution:

9− 2 = 7
9− 4 = 5
9− 5 = 4

DRC(245) = 754

It is easy to verify that doing the digits in any order yields the same result.
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This simplicity of the diminished radix complement computation comes at some expense in
arithmetic operation as shown in the following example.

Example 1.7 Suppose we have two mod99 numbers P and N , i.e. each having two
digits. The following operations are performed by allowing a carry to overflow to the
third digit position. The operations are thus mod1000 originally, then we correct the
result to mod100 and finally to mod99:

(i) P = 47, N = 24:

47
+24
071 71mod100 ≡ 71mod99 = result.

(ii) P = 47, N = 57:

47
+57
104
+1
05

4mod100 ≡ 5mod99 = result.

(iii) P = 47, N = 52:

47
+52
099 99mod100 ≡ 0mod99 = result.

The mod99 result is the same as the mod100 result if the sum is less than 99. If the
sum is an exact multiple of 99 the mod99 result is zero. On the other hand, if the
sum exceeds 99 the mod99 result is greater than the mod100 result. We add one to
the mod100 result in this latter case.
Basically, if the sum is an exact multiple of 99 the final result is zero, otherwise we add
the carry into the third digit position to the mod100 result to get the mod99 result.

To state these findings more formally, since the arithmetic logic itself is always modβp , (where
p ≥ n), we need to define the computation of the sum Smodβn−1 in terms of Smodβn .

Two functions used throughout this book can help. We use the two symbols: dxe and bxc,
respectively for the ceiling and the floor of the real number x. The ceiling function is defined as
the smallest integer that properly contains x; e.g., if x = 1.33, then dxe = d1.33e = 2. The floor
function is defined as the largest integer contained by x, e.g., bxc = b1.33c = 1.

If S is initially represented as a modβp number, or the result of addition or subtraction of two
numbers modβn , then the conversion to a modβn−1 number, S′, is

If S < βn − 1 then S′ = S.

That is,
Smodβn ≡ Smodβn−1 = S′.
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If S = βn − 1 or in general
S = k(βn − 1),

where k is any integer, then
S′ = 0.

Finally, if βn − 1 < S, then S′ must be increased by 1 (called the end around carry) for each
multiple of βn − 1 contained in S. Thus,

S′ =
(
S + b S

βn − 1
c
)

modβn .

That is, S′ is S plus the largest integer contained by S
βn−1 .

Since βn − 1 is a represented element in n-digit arithmetic (modβn arithmetic), we have two
equivalent representations for zero in the mod(βn−1) case: βn − 1 and 0.

The broader issue of βn − 1 and βn modular compatibility will be of interest to us again in
Chapter 3. For the moment, we focus on a restricted version of this issue when using of the
DRC in subtraction. In order to represent negative numbers using the DRC, we will partition
the range of βn representation as follows:

βn − 1, · · · , βn

2 + 1, βn

2
0 most

negative︸ ︷︷ ︸
Negative numbers

βn

2 − 1, βn

2 − 2, · · · , 0
most 0
positive︸ ︷︷ ︸

Positive numbers

Thus, any m-digit (m = n− 1) number P must be in the following range:

βn

2
− 1 ≥ P ≥ −β

n

2
+ 1.

Note that βn

2 is congruent to (lies in the same residue class as) −β
n

2 + 1 modulo βn − 1, since(
−βn

2
+ 1
)

modβn−1 ≡
(

(βn − 1)− βn

2
+ 1
)

modβn−1 ≡
(
βn

2

)
modβn−1.

So long as β has 2 as a factor, there will be a unique set of leading digit identifiers for negative
numbers. For example, if β = 10, a negative number will have 5, 6, 7, 8, 9 as a leading digit.

?=⇒ Exercise 1.8 Is it really accurate to say “negative numbers” in the previous
paragraph?

Consider the computation P −N using the diminished radix complement (DRC) with modβn

arithmetic logic to be corrected to modβn−1. P and N satisfy βn

2 − 1 ≥ P,N ≥ −β
n

2 + 1 and
due to the properties of modular arithmetic we have

(P −N)modβn−1 ≡ (Pmodβn−1 −Nmodβn−1) modβn−1.

Since Pmodβn−1 = P and −Nmodβn−1 = βn − 1−N then

(P −N)modβn−1 = (P + βn − 1−N)modβn−1 ≡ (P + DRC(N))modβn−1.
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However, the basic addition logic is performed modβn . We must thus correct the modβn

difference, S, to find the modβn−1 difference, S′.

S = P + βn − 1−N.

If S > βn − 1, then S′ = S + 1; i.e., P −N > 0 .
If S < βn − 1, then S′ = S; i.e., P −N < 0 .
If S = βn − 1, then S′ = 0; i.e., P = N ,

and the result is zero (i.e., one of the two representations).

?=⇒ Exercise 1.9 If P = +250 and N = +245 compute P −N using the diminished
radix complement.

In summary, in the decimal system −43 ⇒ 99 − 43 = 56, and in the binary system −3 ⇒
111− 011 = 100. These examples illustrate the advantage of the diminished radix complement
code—the ease of initial conversion from positive to negative numbers; the conversion is done
by taking the complement of each digit. Of course, in the binary system, the complement is the
simple Boolean NOT operation.

A disadvantage of the system is illustrated by taking the complement of zero; for example, in a
3-digit decimal system, the complement of zero = 999− 000 = 999. Thus, the number zero has
two representations: 000 and 999. (Note: the complement of the new zero is 999− 999 = 000.)

Another disadvantage is that the arithmetic logic may require correction of results (end-around
carry)—see Chapter 4.

It is important to remember that the same bit pattern means different things when interpreted
differently. Table 1.1 illustrates this fact for all the combinations of four bits and six different
coding schemes. For the sign magnitude representation, the MSB is assumed to represent a
negative sign if it is equal to one. The excess code is yet another way of representing negative
numbers. In excess code, the unsigned value of a bit pattern represents the required number
plus a known excess value (sometimes called bias). In the table, the bias equals eight in the
first case, seven in the second, and three in the third. Although four bits provide 16 distinct
representations, the use of sign-magnitude or ones complement leads to only 15 distinct numbers
since there are two equivalent representations of zero in each of those two codes. The two’s
complement and the excess coding allow the representation of 16 different numbers. However,
the range of representable numbers may be changed according to the implicitly assumed bias.
Other ways of encoding numbers are possible and we will see more of these as we progress in
the book.

In complement coding, the bit pattern range is divided in two halves with the upper half (i.e.
where the MSB = 1) representing negative values. In excess codes, on the other hand, the bit
patterns that look smaller (i.e. their unsigned value is smaller) are in fact less than those that
look larger.
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Table 1.1: Some binary coding schemes

Pattern Unsigned S-M 1s 2’s excess-8 excess-7 excess-3
1111 15 −7 −0 −1 7 8 12
1110 14 −6 −1 −2 6 7 11
1101 13 −5 −2 −3 5 6 10
1100 12 −4 −3 −4 4 5 9
1011 11 −3 −4 −5 3 4 8
1010 10 −2 −5 −6 2 3 7
1001 9 −1 −6 −7 1 2 6
1000 8 −0 −7 −8 0 1 5
0111 7 7 7 7 −1 0 4
0110 6 6 6 6 −2 −1 3
0101 5 5 5 5 −3 −2 2
0100 4 4 4 4 −4 −3 1
0011 3 3 3 3 −5 −4 0
0010 2 2 2 2 −6 −5 −1
0001 1 1 1 1 −7 −6 −2
0000 0 0 0 0 −8 −7 −3

Example 1.8 The mix between the various coding schemes is a common bug for
beginners in programing. For example, the following C code shows what we might get
if we ‘look’ at the same bit pattern as unsigned versus if we look at it as signed within
the context of a program using 32 bits to represent integers.

#include<s t d i o . h>

i n t main ( void )
{
i n t x=2000000000;
i n t y=2000000000;

p r i n t f ( ”x = %d , y = %d\n” ,x , y ) ;
p r i n t f ( ” ( unsigned ) x+y = %u\n” , x+y ) ;
p r i n t f ( ” ( s igned ) x+y = %d\n” , x+y ) ;
}

Once we compile and run this code the result is:

x = 2000000000 , y = 2000000000
( unsigned ) x+y = 4000000000
( s igned ) x+y = −294967296

The sum of x and y in example 1.8 has MSB = 1 which indicates a negative number if the
programmer is not careful to ask for an unsigned interpretation. In this example, two numbers
in the ‘lower half’ of the range of two’s complement representation were summed together. Their
sum is in fact a number beyond the lower half and lies within the upper half of the range. If we
interpret that sum as a two’s complement representation we get the strange result. This is an
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instance of ‘overflow’ as we will see in the following section.

1.4 Implementation of Integer Operations

For each integer data representation, five operations will be analyzed: addition, subtraction,
shifting, multiplication, and division. Most of the discussion assumes binary arithmetic (radix
2).

Addition and subtraction are treated together, since the subtraction is the same as addition of
two numbers of opposite signs. Thus, subtraction is performed by adding the negative of the
subtrahend to the minuend. Therefore, the first thing to be addressed is the negation operation
in each data representation.

1.4.1 Negation

In a ones’ complement system, negation is a simple Boolean NOT operation. Negation in a
two’s complement (TC) system can be viewed as

TC(N) = 2n −N = (2n − 1−N) + (1),

where n is the number of digits in the representation. It may look awkward in the equation, but
in practice this form is easier to implement, since the first term is the simple ones’ complement
(i.e., NOT operation) and the second term calls for adding one to the least significant bit (LSB).

Although we have just described radix complement and diminished radix complement in general
terms, it is instructive to re-iterate some of the issues for the special case of a binary radix. For
this purpose, we follow the discussion of ones’ and two’s complement operations provided by
Stone (9).

1.4.2 Two’s Complement Addition

Two’s complement addition is performed as if the two numbers were unsigned numbers; that is,
no correction is required. However, it is necessary to determine when an overflow occurs. For
two summands P and N , there are four cases to consider:

Case P N Comments
1 Positive Positive
2 Negative Negative
3 Positive Negative |P | < |N |
4 Positive Negative |P | > |N |

For positive numbers, the sign bit (the MSB) is zero, and for negative numbers, the sign bit is
one. The sign bit is added just like all the other bits. Thus, the sign bit of the final result is
made up of the sum of the summands’ sign bits plus the carry into the sign bit.



16 CHAPTER 1. NUMERIC DATA REPRESENTATION

In the first case, the sum of the sign bits is zero (0 + 0 = 0), and if no carry is generated by
the remaining lower order bits, the resultant sign bit is zero. No overflow occurs under this
condition. On the other hand, if a carry is generated by the remaining lower order bits, the
binary representation of the result does not fit in the number of bits allocated to the summands
and the resultant sign bit becomes one. That is, adding two positive summands generates a
result surpassing the boundary which separates the negative and positive numbers. The result
is falsely interpreted as being negative. An overflow must be signaled under this condition.

The rest of the cases are analyzed in a similar fashion and summarized in the following table:

Sum Carry-in to Sign Carry-out of
Case P N of Signs Bit (Cn−1) Sign Bit (Cn) Overflow Notes
1a Pos Pos 0 0 0 no
1b Pos Pos 0 1 0 yes
2a Neg Neg 0 1 1 no
2b Neg Neg 0 0 1 yes
3 Pos Neg 1 0 0 no |P | < |N |
4 Pos Neg 1 1 1 no |P | > |N |

Two observations can be made from the above table:

1. It is impossible to overflow the result when the two summands have different signs (this
is quite clear intuitively).

2. The overflow condition can be stated in terms of the carries in and out of the sign bit—that
is, overflow occurs when these carries are different.

Using ⊕ for the exclusive OR, the XOR, operation, the Boolean expression for the overflow is
thus:

OVERFLOW = Cn−1 ⊕ Cn.

1.4.3 Ones Complement Addition

It was mentioned earlier that addition in ones’ complement representation requires correction.
Another way of looking at the reason for correction is to analyze the four cases as was done for
the two’s complement addition (for simplicity, the overflow cases are ignored).

Case 1, both P and N are positive: Same as two’s complement addition, and no correction
is required.

Case 2, both P and N are negative: Remeber that we are using the diminished radix com-
plement (DRC(|x|) = 2n−1−|x|). We want to get DRC(|P |+|N |) by adding DRC(|P |)+
DRC(|N |). However,

2n − 1 − |P |
+ 2n − 1 − |N |

2n+1 − 2 − (|P |+ |N |)
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which is not DRC(|P |+ |N |). The resulting sum is, in fact, larger than what is possible
to represent in n bits and a carry-out of the sign bit occurs. In modulo 2n, the number
2n+1 is represented by its congruent 2n. Thus, the sum is 2n − 2 − (|P | + |N |), whereas
we wanted the ones’ complement format 2n− 1− (|P |+ |N |). Therefore, 1 must be added
to the LSB to have the correct result.

Case 3, P is positive, N is negative, and |P | < |N |:

|P |
+ 2n − 1 − |N |

2n − 1 − (|N | − |P |)

This form requires no correction since it gives a result representable in n bits with the
correct value.

Case 4, P is positive, N is negative, and |P | > |N |:

|P |
+ 2n − 1 − |N |

2n − 1 + (|P | − |N |)

Since |P | > |N |, this result is positive and in the modulo 2n system a carry-out of the
sign bit is generated leaving a result congruent to −1 + (|P | − |N |). Hence, a correction is
required.

The implementation of the correction term is relatively easy. In both cases when a correction is
necessary there is a carry-out of the sign bit. In the other two cases, this carry-out is zero. Thus,
in hardware, the carry-out of the sign bit is added to the LSB (if no correction is required, zero is
added to the LSB). The correction term is the end-around carry, and it causes ones’ complement
addition to be slower than two’s complement addition.

Overflow detection in one’s complement addition is the same as in two’s complement addition;
that is, OVERFLOW = Cn−1 ⊕ Cn.

1.4.4 Computing Through the Overflows

This subject is covered in detail by Garner (10). Here, we just state the main property. In
complement-coded arithmetic, it is possible to perform a chain of additions, subtractions, mul-
tiplications, or any combination that will generate a final correct (representable) result, even
though some of the intermediate results have overflowed.

Example 1.9 In 4-bit two’s complement representation, where the range of repre-
sentable numbers is −8 to +7, consider the following operation:

+5 + 4− 6 = +3. 0101 +5
0100 +4
1001 Overflow
1010 −6
0011 +3 (correct)
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The important condition allowing us to neglect the intermediate overflows is that the final result
is bound to a representable value. In fact, the computation through the overflow follows from
the properties of modular arithmetic:

(A [+,−,×]B [+,−,×]C [+,−,×]D)modµ
= ((A [+,−,×]B [+,−,×]C)modµ [+,−,×]Dmodµ) modµ
= (((A [+,−,×]B)modµ [+,−,×]Cmodµ) modµ [+,−,×]Dmodµ) modµ

If the final result is representable then the intermediate results may be computed modµ without
affecting the correctness of the operations.

1.4.5 Arithmetic Shifts

The arithmetic shifts are discussed as an introduction to the multiplication and division oper-
ations. An arithmetic left shift is equivalent to multiplying by the radix (assuming the shifted
result does not overflow), and an arithmetic right shift is equivalent to dividing by the radix.
In binary, shifting p places is equivalent to multiplying or dividing by 2p. In left shifts (multi-
plying), zeros are shifted into the least significant bits, and in right shifts, the sign bit is shifted
into the most significant bit (since the quotient will have the same sign as the dividend).

Example 1.10 Perform both a left and a right shift by three bits on the binary number
0001 0110 = 22 and check the results.
Solution: After a left shift by two we get 1011 0000. If the numbers are unsigned then
1011 0000 = 176 which is the expected result (= 23×22). However, if the numbers are
signed numbers in two’s complement format then the operation has caused an overflow.
For the case of a right shift, we get 0000 0010 = 2 which is the integer part of 22/(23).

The difference between a logical and an arithmetic shift is important to note. In a logical shift,
all bits of a word are shifted right or left by the indicated amount with zeros filling unreplaced
end bits. In an arithmetic shift, the sign bit is fixed and the sign convention must be observed
when filling unreplaced end bits. Thus, a right shift (divide) of a number will fix the sign bit
and fill the higher order unreplaced bits with either ones or zeros in accordance with the sign
bit. With arithmetic left shift, the lower order bits are filled with zeros regardless of the sign
bit.

As illustrated by the previous example, so long as a p place left shift does not cause an overflow—
i.e., 2p times the original value is less than or equal to the maximum representable number in
the word—arithmetic left shift is the same as logical left shift.
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Example 1.11 What is the effect of a three bit arithmetic left and right shift on
1111 0111 = −9 and 1110 0101 = −27? What if the shifts are logical?
Solution: The results of the four kinds of shifting are

Arith. Left Arith. Right Logic Left Logic Right
×23 ÷23 Shift by 3 Shift by 3

−9 1011 1000 = −72 1111 1110 = −2 1011 1000 = −72 0001 1110 = +30
−27 1010 1000 = −88 1111 1100 = −4 0010 1000 = +40 0001 1100 = +28

It is quite clear that logical right shifts produce wrong results for two’s complement
negative numbers. Only the arithmetic right shifts are useful if we are implementing
complement coding.
For left shifts, both arithmetic and logical shifts produce the same results for −9 since
no overflow occurs. However, the difference is evident in the case of −27.

We notice something from this last example: in two’s complement arithmetic right shift, there
is an asymmetry between the shifted results of positive and negative numbers:

−13 = 1 0011
1 bit right shift→ 1 1001 = −7;

+13 = 0 1101
1 bit right shift→ 0 0110 = +6.

This, of course, relates to the asymmetry of the two’s complement data representation, where
the quantity of negative numbers is larger by one than the quantity of positive numbers.

By contrast, the ones’ complement right shift is symmetrical:

−13 = 1 0010
1 bit right shift→ 1 1001 = −6;

+13 = 0 1101
1 bit right shift→ 0 0110 = +6.

Notice that the asymmetric resultant quotients correspond to modular division—i.e., creating a
quotient so that the remainder is always positive. Similarly, symmetric quotients correspond to
signed division—the remainder assumes the sign of the dividend.

1.4.6 Multiplication

In unsigned data representation, multiplying two operands, one with n bits and the other with
m bits, requires that the result will be n + m bits. If each of the two operands is n bits, then
the product has to be 2n bits. This, of course, corresponds to the common notion that the
multiplication product is a double-length operand.

?=⇒ Exercise 1.10 Prove that 2n bits are necessary to correctly represent the
product P of two unsigned n bits operands.

In signed numbers, where the MSB of each of the operands is a sign bit, the product should re-
quire only 2n−1 bits, since the product has only one sign bit. However, in the two’s complement
code there is one exceptional case: multiplying −2n by −2n results in +22n. But this positive
number is not representable in 2n − 1 bits. This latter case is often treated as an overflow,
especially in fractional representation when both operand and results are restricted to the range
[−1,+1[. Thus, multiplying −1×−1 gives the unrepresentable +1.
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1.4.7 Division

Division is the most difficult operation of the four basic arithmetic operations. Two properties
of the division are the source for this difficulty:

1. Overflow—Even when the dividend is n bits long and the divisor is n bits long, an overflow
may occur. A special case is a zero divisor.

2. Inaccurate results—In most cases, dividing two numbers gives a quotient that is an ap-
proximation to the actual rational number.

In general, one would like to think of division as the converse operation to multiplication but,
by definition:

a

b
= q +

r

b
,

a = b× q + r,

where a is the dividend, b is the divisor, q is the quotient, and r is the remainder. In the subset
of cases when r = 0, the division is the exact converse of multiplication.

In terms of the natural integers (Peano’s numbers), all multiplication results are still integers,
but only a small subset of the division results are such numbers. The rest of the results are
rational numbers, and to represent them accurately a pair of integers is required.

In terms of machine division, the result must be expressed by one finite number. Going back to
the definition of division,

a

b
= q +

r

b
,

we observe that the same equation holds true for any desired finite precision.

Example 1.12 In decimal arithmetic, if a = 1, b = 7, then 1/7 is computed as follows:

a/b = q + r/b or a = b× q + r
1/7 = 0.1 + 0.3/7 or 1 = 0.7 + 0.3 q = 0.1
1/7 = 0.14 + 0.02/7 or 1 = 0.98 + 0.02 q = 0.14
1/7 = 0.142 + 0.006/7 or 1 = 0.994 + 0.006 q = 0.142
1/7 = 0.1428 + 0.0004/7 or 1 = 0.9996 + 0.0004 q = 0.1428

The multiplicity of valid results is a difficulty in division. This multiplicity depends on the sign
conventions, e.g., signed versus modular division. Recall that −7÷m3 = −3 while −7÷s3 = −2.
Thus, if the hardware provides modular division using two’s complement code and one wishes a
signed division, a negative quotient requires a correction by adding one to the least significant
bit.

Multiplication can be thought of as successive additions, and division is similarly successive
subtractions. However, in multiplication it is known how many times to add, in division the
quotient digits are not known in advance. It is not absolutely certain how many times it will be
necessary to subtract the divisor from a given order of the dividend.
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Example 1.13 If we divide 01111 by 00100 through successive subtractions we get:

Iteration Remainder Is the remainder negative?
1 01111− 00100 = 01011 no
2 01011− 00100 = 00111 no
3 00111− 00100 = 00011 no
4 00011− 00100 = 11111 yes⇒ Stop

which means that the result is 3 in decimal or 00011 in binary.

As the example shows, in these algorithms, which are trial and error processes, it is not known
that the divisor has been subtracted a sufficient number of times until it has been subtracted
once too often. In implementing a simple subtractive division algorithm, the lack of knowl-
edge regarding the number of subtractions to perform in the division becomes evident. Several
subtractive techniques exist with varying complexities and time delays.

The difficulties encountered in performing division as a trial and error shift and subtract process
are eliminated when we choose a different a approach to the implementation. The division of a/b
is equivalent to the multiplication of a by the reciprocal of b, (1/b). Thus, the problem is reduced
to the computation of a reciprocal, which is discussed in chapter 6 on division algorithms.

1.5 Going far and beyond

After you have learned about the basic fundamentals with integers, it is now time to stretch
that framework. To start, try to relax a bit and solve the following exercise.

?=⇒ Exercise 1.11 Given the following nine dots, connect them using only four
straight lines without lifting the pen off the paper.u u uu u uu u u
(Hint: remember to go far and beyond!)

1.5.1 Fractions

In our discussion of the weighted positional number system so far we used the formula N =∑i=n−1
i=0 diβ

i for integers. Obviously, there is a need to extend integers to represent fractions as
well. Such an extension is quite simple if we write N =

∑i=n−1
i=l diβ

i where l ≤ 0.

Example 1.14 Using N =
∑i=n−1
i=l diβ

i with l = −3, n = 6, β = 2, and di ∈ {0, 1},
represent 240

16 . What if l = −4?
Solution: The infinite precision result of 241

16 = 1111.0001 which is represented as
001111000 when l = −3. The fractional point is implicit. This representation has
six (= n) integer bits and three (= l) fractional bits. The precision is not enough to
represent the result accurately.
When l = −4, the system has enough precision and the representation is 0011110001.
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Table 1.2: A 4 bits negabinary system.
-8 +4 -2 +1 Value -8 +4 -2 +1 Value
0 0 0 0 0 1 0 0 0 -8
0 0 0 1 +1 1 0 0 1 -7
0 0 1 0 -2 1 0 1 0 -10
0 0 1 1 -1 1 0 1 1 -9
0 1 0 0 +4 1 1 0 0 -4
0 1 0 1 +5 1 1 0 1 -3
0 1 1 0 +2 1 1 1 0 -6
0 1 1 1 +3 1 1 1 1 -5

Such a representation has a fixed number of fractional and integer bits. Hence, we call the
numbers represented in this manner fixed point numbers. The example hinted to a limitation of
fixed point representation, it is not possible to represent both very small and very large numbers
using a fixed point system unless a very large number of bits exist at both sides of the implicit
fractional point. Such a large number of bits is not easy in practical implementation. It is this
specific need to represent a wide range of numbers that gave rise to another representation:
floating point numbers which we discuss in detail in chapter 2.

1.5.2 Is the radix a natural number?

Let us concentrate once more on N =
∑i=n−1
i=l diβ

i to eliminate two more implicit assumptions
that were made earlier. These are that β is a positive integer and that 0 ≤ di < β. Neither of
these two conditions is necessary and, in fact, systems have been proposed and built using bases
and digits that violate those assumptions. We introduce the basic concepts here and develop
them in later chapters.

The negabinary system (11) uses β = −2 and represents both positive and negative numbers
without a need for complement coding as shown in Table 1.2 for a four bits system. This
4 bits system represents numbers in the range {−10,−9, · · · , 0, 1, · · · , 5}. It has a unique rep-
resentation for zero. However, the system is not balanced in the sense that the number of
negative numbers is twice that of positive numbers. Hence, in practical application, the num-
bers {−10,−9,−8,−7,−6} cannot be used because their complements with the same modulus
are missing. In fact, complementation in this system is more complicated that the case of two’s
and ones’ complement. If the number of bits is odd, the system will represent more positive
numbers than negative numbers.

For a large number of applications, there is a need to support complex numbers. Usually, the
support is done in software by grouping a pair of numbers where one represents the real part
while the other represents the imaginary part. The hardware in such cases simply supports the
real numbers only and the software layer gives the applications the illusions of complex number
support.

Despite being slightly complicated, complex number support directly in the hardware is also
possible. Because such direct support is quite rare in practice, we will continue to assume that
β is real in the remainder of our discussion. However, to illustrate the possibility and as a
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challenge, try to solve the following exercise completely before looking at the solution.

?=⇒ Exercise 1.12 Your new company wants to build some hardware to directly
support complex numbers. The arithmetic group decided to use a weighted
positional number system with the radix β = −1 + j (where j =

√
−1) and

the digit set di ∈ {0, 1} for any bit location i.

(a) What does the bit patterns 0 1011 0011 and 1 1101 0001 represent in this
system?

(b) Find a procedure to determine if a bit pattern represents a real number
(i.e. that the imaginary part is zero).

(c) Show that the system is capable of representing any positive or negative
integer number.

You might think that after dealing with complex numbers, we have gone quite far and beyond
the original system of integers that we defined earlier. Well, we did but not maybe far enough
in all directions! Try to solve the following challenge.

?=⇒ Exercise 1.13 In exercise 1.11 you managed to connect the nine dots using
four lines. Now try to connect them using three lines only without lifting
the pen off the paper. u u uu u uu u u

1.5.3 Redundant representations

Now that we know that β is not necessarily a positive integer, the condition on the digits being
0 ≤ di < β is easy to dismiss. Although the use of non-integer, non-positive β is theoretically
possible it is infrequent in practice. On the other hand, the use of a digit set that breaks the
condition 0 ≤ di < β is quite frequent. In fact, the case when the number of digits exceeds the
radix of the system is of great importance for high speed arithmetic since it provides a redundant
system. Almost, all the high speed multipliers and dividers in general purpose processors in the
world use redundant representations internally. Hence the study of these redundant represen-
tations has a high practical importance. Redundant systems have the possibility to perform
addition without carry propagation and hence achieve higher speeds.

Example 1.15 Given β = 10 and 0 ≤ di ≤ 19, perform the addition of 569, 783, and
245.
Solution: Due to the larger set of digits available in this system, we get

5 6 9
+ 7 8 3
+ 2 4 5

14 18 17

which is the final result without any carry propagation! It is also important to note
that it is possible to perform the addition at all the digit positions in parallel and not
necessarily starting at the LSD.
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An attentive reader might note that the numbers in the previous example were chosen so that
the sum at any position does not exceed the largest available digit. What if we get a larger
sum? Another question might be “Is the lower bound on di always 0?”

Both questions lead us to consider a more general case for a system where di belongs to a digit
set D = {α, α+1, ..., γ}. If 0 does not belong to D, the system is not capable of representing the
value of absolute zero and special measures must be taken for that. Hence, for most practical
systems, α ≤ 0 ≤ γ. For the cases described so far, we have had α = 0 and γ = |β| − 1. We
define a redundancy index ρ as the number of excess digits available in the system beyond the
base:

ρ = Number of digits in D − Radix of the system.

When D has all the numbers starting from α and going up to γ,

ρ = (γ − α+ 1)− β.

If ρ > 0 the system is redundant. We adopt the notation of using an over bar such as 3̄ to
indicate that the value of a digit is negative.

Example 1.16 To illustrate some points, let us assume a weighted positional signed
digit system with base β where the digits di are such that −β < di < β. Since signed
digits are used, the numbers, in general, have multiple representations. Prove that
there exists a special number that has only a unique representation.
Solution: The special number is zero. Any non-zero number X represented by
xn−1xn−2 · · ·x0 where −β < xi < β has at least two representations. To prove this
redundancy, we select any two consecutive digits xjxj−1 satisfying the following con-
ditions and recode them according to the given rules:

Old values New values
xj−1 > 0 and xj < (β − 1) (xj + 1)(xj−1 − β)
xj−1 < 0 and xj > −(β − 1) (xj − 1)(xj−1 + β)

Such consecutive digits must exist in any number with the exception of

1. X = (β − 1)(β − 1)(β − 1) · · ·, and

2. X = (β − 1) (β − 1) (β − 1) · · ·.

These two cases are recoded as

β − 1 β − 1 · · · β − 1 β − 1 β − 1 · · · β − 1
1 0 0 · · · −1 −1 0 0 · · · 1

To complete the proof, we must consider the case of X = 0 and assume that it has
a representation where some of the digits are non-zero. If xj is the most significant
non-zero digit in this representation then

∑i=j−1
i=0 βi × xi should equal −xj × βj to

yield X = 0. Since | xi |< β then |
∑i=j−1
i=0 βi × xi |≤

∑i=j−1
i=0 βi × (β − 1) < βj which

means that it is impossible to cancel xj by
∑i=j−1
i=0 βi × xi. The only representation

for X = 0 is thus a string of all zero digits.

A system is called maximally redundant (12) if ρ = β − 1 and |α| = γ = β − 1. The previous
example uses such a maximally redundant system. In fact, a range of systems is defined based
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on the different values of the parameters. Of particular interest is the minimally redundant
symmetric systems where ρ = 1 and 2|α| = 2γ = β with β ≥ 4. We extensively employ those
minimally redundant symmetric systems in parallel multiplication (chapter 5) when a technique
called Booth recoding is used. The systems with ρ ≥ β are called over-redundant.

?=⇒ Exercise 1.14 When do redundant systems have non unique representations
of zero?

In the case of β ≥ 2 and ρ ≥ 2, addition with a guaranteed limited carry propagation is possible
if we implement the following rules(12):

1. At each position i, form the primary sum pi = xi + yi of the two operands x and y.

2. If pi ≥ γ generate a carry ci+1 = 1. If pi ≤ α generate a carry ci+1 = −1. Otherwise,
ci+1 = 0.

3. The intermediate sum at position i is wi = pi − βci.

4. The final sum at position i is si = wi + ci.

Example 1.17 Using β = 10 and di ∈ {−9, . . . , 9}, apply the previous rules to
202 + 189 and 212 + 189.
Solution: Obviously, the results are 391 and 401 but let us see the detailed operations:

2 0 2 2 1 2
+1 8 9 +1 8 9

3 8 11 |pi| ≥ |γ|? 3 9 11

0 1 ci 1 1
3 8 1 wi 3 1̄ 1
3 9 1 si 4 0 1

It is quite important to note two things:

1. It is possible to do these computations from the MSD to the LSD or in any other
order. If the hardware is there, all of the digit positions can be done in parallel.
There is no carry propagation from the LSD to the MSD.

2. Since we recode the primary sum if it is equal to |γ| (as in the example to the
right), we are sure that any carry of value ±1 from the next lower order position
is completely absorbed and never propagates to higher order digit positions.

We will further explore the use of redundancy for various reasons in practical arithmetic circuits
in subsequent chapters.

1.5.4 Mixed radix systems

A last implicit assumption that we should throw away before leaving this chapter is the formula
N =

∑i=n−1
i=l diβ

i itself! In the way humans count time, we have 60 seconds in a minute,
60 minutes in an hour, 24 hours in a day, and 7 days in a week. That system does not have a
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Table 1.3: Some decimal coding schemes

Pattern 8421 5421 4221 5211 6331 5221 5321 4421 2421 4311
1111 i i 9 9 i i i i 9 9
1110 i i 8 8 i 9 i i 8 8
1101 i i 7 8 i 8 9 9 7 8
1100 i 9 6 7 9 7 8 8 6 7
1011 i 8 7 7 i 8 8 7 5 6
1010 i 7 6 6 9 7 7 6 4 5
1001 9 6 5 6 7 6 6 5 3 5
1000 8 5 4 5 6 5 5 4 2 4
0111 7 7 5 4 7 5 6 7 7 5
0110 6 6 4 3 6 4 5 6 6 4
0101 5 5 3 3 4 3 4 5 5 4
0100 4 4 2 2 3 2 3 4 4 3
0011 3 3 3 2 4 3 3 3 3 2
0010 2 2 2 1 3 2 2 2 2 1
0001 1 1 1 1 1 1 1 1 1 1
0000 0 0 0 0 0 0 0 0 0 0

fixed β and does not fit the formula N =
∑i=n−1
i=l diβ

i. It is an example of mixed radix systems
where each position has a specific weight but the weights are not necessarily multiples of a single
number. The elapsed time in 2 weeks, 3 days, 2 hours, 23 minutes, and 17 seconds is

Time 2 weeks 3 days 2 hours 23 minutes 17 seconds
Weights 7× 24× 60× 60 24× 60× 60 60× 60 60 1
Value 2× 7× 24× 60× 60 + 3× 24× 60× 60 + 2× 60× 60 + 23× 60 + 17× 1= 1 477 397s.

In mixed radix systems, it is important to clearly specify the possible set of digit values. In
the case of time, the digit values for seconds and minutes is ∈ {0, . . . , 59} while for hours it is
∈ {0, . . . , 23} or {1, . . . , 12}.

Once we allow mixed radix systems, some interesting encodings become feasible. For example,
to represent a single decimal digit using four bits we may use the conventional Binary Coded
Decimal (bcd) which has the weights 8 4 2 1 or any other weights such as those presented in
Table 1.3. Some bit patterns are invalid for certain codes, in those cases, they are marked with
an i in the table.

We see that, with the exception of 8 4 2 1, all the presented codes have redundant representations:
the same number is represented by multiple bit patterns. However, this form of redundancy is
different from what we have just studied in section 1.5.3! Here the bits take only one of two
values either 0 or 1 and do not exceed any ‘radix’, the redundancy comes from the positional
weights.

Some combination of choices lead to incomplete codes such as the 6 3 3 1 code where there is
no way to represent 2 nor 5.

Among the codes of Table 1.3, the 4 2 2 1, 5 2 1 1, 2 4 2 1, and 4 3 1 1 use all the possible
sixteen combinations and do not have any invalid bit combinations. The 4 2 2 1, 5 2 1 1, and
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2 4 2 1 have another interesting feature that does not exist in 4 3 1 1: the nines complement of
a digit is equivalent to the ones complement of its binary representation.

Designers use the properties of these various coding schemes (and others) to their advantage
in many ways when building binary circuits for decimal numbers as we will see. In fact, most
digital circuits are binary. Multi-valued logic is a mature field from the theoretical point of
view. However, the design of circuits implementing multi-valued logic is a much harder task
that does not scale easily to large systems. Hence, multi-valued logic has a very small market
share. When designers need to implement a system with β 6= 2, they usually resort to codes
similar to the ones we presented.

To illustrate their use, we briefly present the addition of two numbers using bcd digits. We
assume in this problem that the input digits to the adder are each 4 bits with the normal bcd
coding, i.e. the digit has the same value as the corresponding conventional binary encoding.

It is important to remember that any addition result exceeding the value of nine in a digit
position must produce a carry to the next higher digit position. In a regular four bits binary
adder, a carry is produced when the sum exceeds sixteen. A regular binary adder produces the
primary sum bits p3, p2, p1, p0, and the carry c4

a3 a2 a1 a0

+ b3 b2 b1 b0
c4 p3 p2 p1 p0

For example,
5 0101

+ 3 + 0011
0 8 0 1000

For a bcd adder, we must indicate if the sum exceeds nine and produce the correct results in
bcd. The sum exceeds nine when there is a carry out of the 4 bit binary adder or if the bits of
the resulting digit are of the form: 101x or 11xx as in

8 1000
+ 9 + 1001
1 7 1 0001 → 1 0111

and
5 0101

+ 6 + 0110
1 1 0 1011 → 1 0001

then the decimal carry out signal is

cout = c4 + p3(p2 + p1)

If a carry is produced, we must correct the value of the resulting digit. This correction compen-
sates for the six values that are not used in the case of bcd but that exist in the case of binary.
Hence, we add 0110 to the primary sum.

Another way of looking at this correction would be to subtract ten from the primary sum
since we are now generating a carry. The subtraction of ten is done by the addition of its
two’s complement, i.e. by adding 10110 to the whole digit including c4. We then take the least
significant 4 bits and any carry produced is conveyed to the next higher digit position.

Whichever way, we correct the least significant bits by adding 0110. We will see more circuits
for decimal adders using different coding schemes in chapter 4.
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1.6 Further readings

Several good sources exist on computer arithmetic. The reader is encouraged to check N. R.
Scott, Computer number systems and arithmetic. Englewood Cliffs, New Jersey 07632, USA:
Prentice-Hall, Inc., 1985 for a good introduction on the history of numbers. It also contains a
chapter on nonconventional number systems as well as decimal arithmetic.

R. M. M. Oberman, Digital circuits for binary arithmetic. London: The MacMillan Press LTD,
1979 presents the negabinary system and shows how to implement several circuits for negabinary
as well as for other signed digits systems.

B. Parhami, Computer Arithmetic Algorithms And Hardware Designs. New York: Oxford Uni-
versity Press, 2000 presents a good exposition of redundant numbers.

1.7 Summary

In arithmetic, the representation of integers is a key problem. Machines, by their nature, have a
finite set of symbols or codes upon which they can operate, as contrasted with the infinity that
they are supposed to represent. This finitude defines a modular form of arithmetic widely used
in computing systems. The familiar modular system, a single binary base, lends itself readily
towards complement coding schemes which serve to scale negative numbers into the positive
integer domain.

Complement coding reduces the subtraction operation to an addition of the negative of the
subtrahend. Hence, the negation of a number is a topic of study in arithmetic systems using
complement codes. Within integer numbers, arithmetic shifting is equivalent to multiplication
and division depending on the shifting direction.

The basic ideas behind the weighted positional number system can be extended by using different
bases and digit sets.

?=⇒ Exercise 1.15 The great challenge after reading this chapter is to go back to
the nine dots of exercise 1.11 and connect them all using only one straight
line. Once you solve this one, go to relax before starting your next explo-
ration with the following chapter.
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1.8 Problems

Problem 1.1 Suppose in an 8 bit base 2 system A = 01010101 and B = 10100110, find A+B
and A−B if

1. A and B are in 2’s complement form

2. A and B are in 1’s complement form

3. A and B are in sign magnitude form

Problem 1.2 Find an algorithm for computing XmodM for known M , using only the addition,
subtraction, multiplication, and comparison operations. You should not make any assumptions
as to the relative size of X and M in considering this problem.

Problem 1.3 Find an algorithm for multiplication with negative numbers using an unsigned
multiplication operation. Show either that nothing need be done, or describe in detail what
must be done to the product of the two numbers, one or both of which may be in complement
form.

1. For radix complement.

2. For diminished radix complement.

Problem 1.4 A number system has β = 10 as a radix and the digits are chosen from the set
D{0, 1, 20, 21, 40, 41, 60, 61, 80, 81}.

1. Is this system redundant?

2. Represent the integers 0 through 99 in this system. (You will need at most three digit
positions to represent any of these integers.)

Problem 1.5 In a signed digit system with five digits β = 10 and the digit set is {7̄, 6̄, · · · , 6, 7}

1. Convert each of the following conventional decimal numbers into the signed digit repre-
sentation: 9898, 2921, 5770, -0045.

2. In SD find the sum of the four numbers.

3. Convert the result back from SD to conventional form to confirm the correctness of the
calculation.

Problem 1.6 In order to subtract an unsigned positive binary number B from another unsigned
positive binary number A (each n bits long), a designer complements each bit of B and uses a
normal binary adder to add A to the complemented version of B with an additional carry-in of
one.

1. Prove that the absence of a carry out signal (i.e. carry out equal to zero) indicates a
negative result.
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2. In what format (unsigned, ones complement, two’s complement) is the result?

Problem 1.7 In a certain communication standard, the only available digits in a binary system
are −1 and 1.

1. Is this a redundant or non-redundant number system? Why?

2. Prove that the least significant bit, LSB, of the sum of an even number of digits (such as
in 1 + 1̄ + 1̄ + 1 + 1 + 1 = 10) is always equal to zero.

3. Prove that the sum of a number N (even or odd) of digits in this system can be determined
by counting only either the positive or the negative digits but not necessarily both.

4. Can the sum be represented in the same system (same digits and radix) as the original
input digits? If yes how and if no why?

Problem 1.8 In a weighted positional signed digit system, the digits di are chosen such that
−β < di < β where β is the base. Since signed digits are used, the numbers, in general,
have multiple representations. Prove that there exists a special number that has only a unique
representation.

(Hint: what about a number that is sometimes considered neither positive nor negative and
sometimes considered both, how do you represent it? Can it be represented otherwise given the
stated conditions?)

Problem 1.9 A full adder circuit takes two inputs ai and bi as well as a carry-in signal ci to
produce two outputs: the carry-out signal ti+1 and the sum bit si. The mathematical relation
between these quantities is ai + bi + ci = 2ti+1 + si (the + sign stands for addition here) which
yields the logical equations ti+1 = aibi ∨aici ∨ bici (the ∨ sign stands for a logical OR here) and
si = ai ⊕ bi ⊕ ci.

1. We want to design a similar circuit that has the mathematical relation ai + bi − ci =
2ti+1 − si (the + sign stands for addition and the − sign stands for subtraction). Write
the corresponding truth table and logical equations to get the output bits.

Assume that you have two unsigned numbers X and Y represented in regular binary by
their bits (X = xn−1 . . .xixi−1 . . . x1x0 and Y = yn−1 . . . yiyi−1 . . . y1y0). Use a number
of blocks from the circuit that you have just designed

↓ ↓ ↓
ai bi ci

(ai + bi − ci = 2ti+1 − si)

ti+1 si
↓ ↓

to get a subtractor giving the result R = X − Y . State how many cells you are using.
Remember to set any unused inputs and to indicate how many bits are in the result R.
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2. In the two’s complement format a number W of n bits has the value W = −wn−12n−1 +∑n−2
i=0 wi2

i. What is the corresponding equation giving the value of R? Why?

Problem 1.10 A row of full adders is used to sum three binary vectors represented in two’s
complement form. If two vectors are non-negative (positive or zero) and the third vector is
strictly negative, prove that the result is two vectors having opposite signs.

Problem 1.11 One way to represent decimal digits from 0 to 9 on computers is to use the
excess-3 encoding. In this code, each digit is represented by a four bits binary number equal to
that digit plus three. The four bit combinations corresponding to a digit in the range from 0
to 9 are called valid. For example, 0111 represents 4 while 1100 represents 9 and both of these
four bit combinations is thus valid. The combinations that do not correspond to a digit in that
range are called invalid.

1. Give a table with all the possible combinations of four bits indicating the corresponding
digit if it is valid or labeling it as invalid.

2. How do we get the nines complement of a number in excess-3?

3. Design a circuit that takes two inputs A and B each consisting of four bits representing a
decimal digit in excess-3 encoding as well as a carry-in signal c (a single bit that is either 1
or 0) to produce two outputs: the carry-out signal t (a single bit) and the sum digit S
(four bits in excess-3 encoding). The mathematical relation between these quantities is
A + B + c = 10t + S (the + sign stands for addition here). You can use full adders and
any other simple logic gates (AND, OR, NOT, NAND, NOR, XOR, and XNOR) as your
building blocks. If you need, you can also use multiplexers. Remember to check that your
circuit produces the correct result even when the carry-out signal is set to one.

Problem 1.12 Fast parallel decimal multipliers (15) present another skillful use of the codes
presented in Table 1.3. The redundant codes 4 2 2 1 and 5 2 1 1 are used together in the
same design. The assumption that we should stick to a single number system in a design is yet
another assumption that we should shed away in this chapter.

1. A number is encoded in 4 2 2 1 and we want to recode it to 5 2 1 1. Is there a unique way
of making the transformation? Why?

2. Give the logical equations of a block that takes a number in 4 2 2 1 and recodes it in 5 2 1 1.

3. Prove that if a multi-digit number X where each digit is encoded in 5 2 1 1 and we form
another number Y by shifting X one bit position to the left then interpret Y as being
encoded in 4 2 2 1 then Y = 2X. (Y is obviously one digit larger than X. Assume that
zero is shifted into the LSB and that three extra zeros are padded to fill the MSD of Y . )

Problem 1.13 In a certain design three types of bits are used. Posibits (p) are regular con-
ventional bits where the mathematical value mp ∈ {0, 1}. The mathematical value of negabits
(n) on the other hand are mn ∈ {−1, 0} and that of unibits (u) are mu ∈ {−1, 1}. The bits are
represented by the logical values `p, `n, `u ∈ {0, 1} to correspond with their mathematical values
as follows.

Bit type p n u
Logial value ` 0 1 0 1 0 1
Mathematical value m 0 1 −1 0 −1 1
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1. It is obvious that mp = `p. Give the mathematical relation between mn and `n as well as
between mu and `u.

2. If we use a single type of bits in a number (i.e. all nn . . . nn or all uu . . . uu for example)
where the radix is β = 2 will that be a redundant number system? Clearly indicate the
case for all three types of bits.

3. The regular full adder for posibits takes three bits a, b, and c and produces two bits their
sum s and the carry transfered to the higher weight t such that 2t+ s = a+ b+ c. Prove
that the same full adder structure produces the correct sum and transfer bits if the inputs
are three negabits (the t and s in that case are negabits as well). Repeat for three unibits.

4. We form a radix-16 digit using a combination of those different bits arranged in powers
of 2 as

23 22 21 20

n p p p
u

where a posibit and a unibit have the same mathematical weight of 20 and a negabit has the
weight 23. What is the range of values that such a digit can take given the mathematical
values of the different bits and their weights? Is the system using such radix-16 digits a
redundant or non-redundant number system?



Chapter 2

Floating over the vast seas

2.1 Motivation and Terminology; or the why? and what?
of floating point.

So far, we have discussed fixed point numbers where the number is written as an integer string
of digits and the radix point is a function of the interpretation. In this chapter, we deal with a
very important representation of numbers on digital computers, namely the floating point repre-
sentation. It is important because nearly all the calculations involving fractions use it. Floating
point representations have also been the subject of several proprietary as well as international
standards. We will attempt to contrast those standards and expose the advantages and disad-
vantages of each. However, before that, we need to know why did humans use a floating point
representation from the first place and what is it exactly that is floating?

The dynamic range, which is one of the properties considered in the choice of a number system,
is the ratio of the largest magnitude to the smallest non-zero magnitude representable in the
system. The problem with fixed point arithmetic is the lack of dynamic range as illustrated by
the following example in the decimal number system.

Example 2.1 In a system with four decimal digits the numbers range from 9 999 to 0
with a dynamic range of 9 999 ≈ 10 000. This range is independent of the decimal
point position, that is, the dynamic range of 0.9999 to 0.0000 is also ≈ 10 000. Since
this is a 4-digit number, we may want to represent during the same operation both
9 999 and 0.0001. This is, however, impossible to do in fixed point arithmetic without
some form of scaling.

The motivation for a floating point representation is thus to have a larger dynamic range. The
floating point representation is similar to scientific notation; that is: fraction × (radix)exponent.

For example, the number 99 is expressed as 0.99 × 102. In a computer with floating point
instructions, the radix is implicit, so only the fraction and the exponent need to be represented
explicitly.

33
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Example 2.2 A possible floating point format for a system with four decimal digits
is:

︸ ︷︷ ︸︸ ︷︷ ︸
exponent fraction

What is the dynamic range in this representation assuming positive numbers and
positive exponents only?
Solution: Note that the dynamic range is the ratio of the largest number representation
to the smallest (nonzero) number representation. Hence,

1. Smallest (nonzero) number is 0.01× 100 = 0.01.

2. Largest number is 0.99× 1099, approximately 1099.

3. Therefore, the dynamic range is approximately 1099/0.01 = 10101.

Thus, in a floating point representation, the dynamic range is several orders of mag-
nitude larger than that of a fixed point representation.

In practice, floating point numbers may have a negative fraction and negative exponent. There
are many formats to represent such numbers, but most of them have the following properties in
common:

1. The fraction is an unsigned number called the mantissa.

2. The sign of the entire number is represented by the most significant bit of the number.

3. The exponent is represented by a characteristic, a number equal to the exponent plus some
positive bias.

The following format is an extension of the previous example:

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
sign
(overall)

characteristic
(excess 50)

x mantissa
(magnitude)

implied decimal point

The excess code is a method of representing both negative and positive exponents by adding a
bias to the exponent. In the case of binary or binary-based radix (β = 2k) where nexp is the
number of exponent bits, designers usually choose the bias value close to

1
2

2nexp

For a non-binary based radix with nexp the number of exponent digits the bias is usually taken
as 1

2β
nexp .



2.2. PROPERTIES OF FLOATING POINT REPRESENTATION 35

Example 2.3 For the above format where two decimal digits are used for the expo-
nent,

bias =
1
2

(10)2 = 50.

The biased exponent is called the characteristic and is defined as:

Characteristic = exponent + bias.

Hence, an exponent of 2 results in

Characteristic = 2 + 50 = 52.

Since, by definition in most systems, the number zero is represented by an all zeros bit string,
the advantage of excess representation for the exponent is therefore that smaller numbers (i.e.,
with a negative exponent) uniformly approach zero. Such a scheme simplifies the comparison
logic.

The mantissa is the magnitude of the fraction, and its sign is the MSD of the format. Usually,
a 0 in the sign digit signifies a positive number while a 1 signifies a negative number.

The same approach is used in binary floating point numbers.

Example 2.4 Consider a 32-bit word, where 24 bits are the unsigned mantissa, 7 bits
are the characteristic, and the MSB is the sign of the number, as follows:

0 1 7 8 31

±︸ ︷︷ ︸ 7 bits︸ ︷︷ ︸ 24 bits︸ ︷︷ ︸
sign
(overall)

characteristic
(excess 64)

x mantissa
(magnitude)

implied binary point

What is the range of the representable numbers as determined by the exponent?
Solution: The largest exponent is 127− 64 = 63 and 2+63 ' 10+19.
The smallest exponent is 0− 64 = −64 and 2−64 ' 0.5× 10−20.

2.2 Properties of Floating Point Representation

2.2.1 Lack of Unique Representation

So far, we did not clearly indicate why is such formats called floating point.

In fact, the word floating is used here with the meaning “continually drifting or changing po-
sition” and the point to which we refer is the fractional point delimiting the integer part of a
number from its fractional part. The reason this point is floating is that a normalized scientific
notation is often used.
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Generally, the magnitude of a floating point number is evaluated by M × βexp , where

M = mantissa,
β = radix, and

exp = exponent.

A floating point system must represent the number zero. According to the definition M × βexp,
zero is represented by a zero in the fraction and any exponent. Thus, it does not have a unique
representation. However, in many systems a “canonic” zero is defined as an all zeros digit string
so that both the fraction and the exponent have zero values.

In fact, any number may have multiple representations according to our definition so far. So 0.9
may be represented as 0.9× 100 or 0.09× 101. Most floating point systems define a normalized
number representation. In such a represention, a number is represented by one non-zero digit
preceding the fractional point and the subsequent digits following the point multiplied by the
radix of the system raised to some exponent (d0.d−1 · · · d−n ×βexp, with d0 6= 0.) An alternative
definition is to say that the number is represented by the digit zero preceding the fractional point
and then a fractional part starting with a non-zero digit and all of that multiplied by the radix
raised to some exponent (0.d−1d−2 · · · d−n × βexp, with d−1 6= 0.). For example, in decimal,
the number three hundred and forty two can be represented as 3.42× 102 according to the first
definition and as 0.342 × 103 according to the second definition. Using the first definition, if
we multiply 3.42 × 102 by 10 the result of 34.2 × 102 must be normalized to 3.42 × 103. The
fractional point changed its position after this multiplication, hence the name floating point.

In both definitions of normalization mentioned above, the number zero cannot be correctly
represented as a normalized number since it does not have any non-zero digits and needs a
special treatment. In many systems, the canonical zero is, by definition, the canonic zero
defined earlier as an all zeros string. This definition also simplifies the zero detection circuitry.
It is interesting to note that a canonical zero in floating point representation is designed to be
identical to the fixed point representation of zero.

The two definitions of normalization have been historically used in different implementations.
Since the location of the point is implied, it is important to know which definition of normal-
ization is used on a specific computer in order to interpret the bit string representing a number
correctly.

Example 2.5 Here are some representations and their values according to a simple
format with one digit for the sign, two decimal digits for the exponent (excess 50),
and two decimal digits for the mantissa. In this example, the implied point is to the
left of the MSD of the mantissa as in the second definition of normalization mentioned
above.

0 51 78→+0.78×101 = +7.8 normalized
0 52 07→+0.07×102 = +7.0 unnormalized
0 47 12→+0.12×10−3 = +0.00012 negative exponent
1 51 78→−0.78×101 = −7.8 negative number
0 52 00→+0.00×102 = +0.0 non-canonical zero
0 00 00→+0.00×100 = +0.0 canonical zero

Only mantissas of the form 0.xxx · · · are fractions in reality. When discussing both fraction and
other mantissa forms (as in 1.xxx), people tend to use the more general term significand.
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2.2.2 Range and Precision

The range is a pair of numbers (smallest, largest) which bounds all representable numbers in
a given system. Precision, on the other hand, indicates the smallest difference between the
mantissas of any two such representable numbers.

The largest number representable in any normalized floating point system is approximately equal
to the radix raised to the power of the most positive exponent, and the absolute value of the
smallest nonzero number is approximately equal to the radix raised to the power of the most
negative exponent.

Assuming Mmax and expmax to be the largest mantissa and exponent respectively, we write the
largest representable number as:

max = Mmax × βexpmax

Simililarly, we get the minimum representable number min from the minimum normalized man-
tissa Mmin and the minimum exponent expmin:

min = Mmin × βexpmin

Example 2.6 The following ibm System 370 (short) format is similar to the binary
format of example 2.4, except that the ibm radix is 16. What is max and min?

0 1 7 8 31

±︸ ︷︷ ︸ 7 bits︸ ︷︷ ︸ 24 bits︸ ︷︷ ︸
sign
(overall)

characteristic
(excess 64)

x mantissa
(magnitude)

implied hexadecimal point

(In the ibm formats, a normalized number has a zero integer part and a fractional part
starting with a non-zero digit.)
Solution: Since β = 16, the 24 bits of the mantissa are viewed as 6 digits each with
4 bits. The maximum mantissa Mmax is thus 0.FFFFFF )hex = 1 − 16−6. The
characteristic, however, is still read a regular binary number. Hence, expmax = 63.
Therefore, the largest representable number is

max = 1663 × (1− 16−6) ' 7.23× 1075

Similarly, the smallest positive normalized number is

min = 16−64 × (16−1) ' 5.4× 10−79,

For a given radix, the range is mainly a function of the exponent. By contrast, the precision
is a function of the mantissa. Precision is the resolution of the system, and it indicates the
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minimum difference between two mantissa representations, which is equal to the value of the least
significant bit of the mantissa. Precision is defined independently of the exponent; it depends
only on the mantissa and is equal to the maximum number of significant digits representable
in a specific format. In the ibm short format, there are 24 bits in the mantissa. Therefore,
the precision is six hexadecimal digits because 16−6 = 2−24. If we convert this to human
understandable numbers 2−24 ' 0.6 × 10−7, or approximately seven significant decimal digits.
In the litterature, some prefer to express the precision as the difference between two consecutive
mantissas so that in the previous example, it would be 16−6 and not six.

Example 2.7 More precision is obtained by extending the number of bits in the
mantissa; for example, in the ibm System 370, one more word is added to the mantissa
in its long format, that is, 32 more bits. The mantissa is 56 bits long and the unit
in the last place is 16−14 or 2−56 ' 10−17. The format with an extended mantissa is
commonly called double precision, but in reality the precision is more than doubled.
In the ibm case, this is 17 versus 7 decimal digits.

0 1 7 8 63

±︸ ︷︷ ︸ 7 bits︸ ︷︷ ︸ 56 bits︸ ︷︷ ︸
sign
(overall)

characteristic
(excess 64)

x mantissa
(magnitude)

implied hexadecimal point

?=⇒ Exercise 2.1 What is max and min for the ibm S/370 double format de-
scribed above?

2.2.3 Mapping Errors: Overflows, Underflows, and Gap

As discussed in section 1.1, the finitude of the machine number system poses a few challenges.
In practice, the problem of overflow in a floating point system is much less severe than in a fixed
point system, and most business-type applications are never aware of it. For example, the budget
of the U.S. Government, while in the trillions of dollars, requires only thirteen decimal digits
to represent—well within the capability of the ibm S/370 floating point format. By contrast, in
many scientific applications (16), the computation results in overflows; for example, e200 > 1076,
therefore, e200 cannot be represented in the ibm floating point system.

Similarly, (0.1)200 cannot be represented either, since (0.1)200 = 10−200, and the smallest rep-
resentable number is approximately 10−76. The latter situation is called underflow . Thus,
mapping from the human infinite number system to a floating point system with finite range
may result in an unrepresentable exponent (exponent spill). The exponent spill is called overflow
if the absolute value of the result is larger than max, and it is called underflow if the absolute
value of the result is smaller than min.

In order to allow the computation to proceed in a reasonable manner after an exponent spill, a
designer might replace an underflow by a canonical zero and an overflow by the largest signed
representable number. However, one might also produce a specific bit pattern representing ±∞,
and from that point on this overflow is treated as a genuine ±∞, for example, X ÷∞ = 0.
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These approximations should not be confused with the computations through overflows in fixed
point representation. The latter always produce a correct result, whereas the floating point
approximation of overflow and underflow always produces an incorrect result; but this incorrect
result may have an acceptable error associated with it.

For example, in computing a function using polynomial approximation, some of the last terms
may underflow, but by setting them to zero, no significance is lost. The case in point (16) is
sinX ' X, which for |X| < 0.25× 16−32 is good to over 65 hexadecimal digits.

So far, we have discussed the consequences of mapping out of range numbers, and have shown
that the resulting overflow or underflow is a function of the range; that is, the exponent portion
of the floating point number. Now consider the consequences of the fact that the floating point
number system can represent only a finite subset of the set of real numbers. For simplicity,
assume that all the real numbers are within the range of floating point numbers; thus, the error
in mapping is a function of the mantissa resolution.

For a base β floating point number system with a t-digit mantissa, the value of the gap between
two successive normalized floating point numbers is β−tβexp, where exp is the value of the
exponent (17). The gap is thus related to the precision which we defined earlier as β−t. However,
while the precision is a function of the mantissa alone, the gap is also a function of the value
of the exponent. It is important to note that with an increase in the exponent value by one,
the gap between two successive numbers becomes β times larger. The precision is a constant
defined by the format and the gap is a variable depending on the specific value of the exponent.

When we represent a real number that falls in the gap between two floating point numbers, we
must map it to one of those two numbers. Hence, the magnitude of the mapping error is some
fraction of the gap value.

Example 2.8 In the range of 0.5 to 0.999 . . ., the ibm short format has a maximum
mapping error (gap) of 2−24 × 160 = 2−24 ' 10−7, while the long ibm format reduces
the mapping error to 2−56 ' 10−17.

2.3 Problems in Floating Point Computations

Our attempt here is to introduce the reader to some general problems that exist in all the floating
point systems. These problems are exhibited to different extents in the various standards that we
will present shortly. Once the problems are understood, a comparative analysis of the different
systems becomes much easier to conduct. We tackle the problems in their logical order: first
when we are representing a number in a floating point format, second when we are performing
some calculations, and third when we are getting the result.

2.3.1 Representational error analysis and radix tradeoffs

As discussed earlier, it is impossible for a computer using a finite width representation of a
weighted positional floating number system to accurately represent irrational numbers such as
e and π. Even rational numbers that require a number of digits larger than what the system
provides are not representable. For these cases, the closest available machine number is usually
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substituted. This is one form of representational error and it results from the lack of enough
digits in the mantissa for the required significance. The other form of representational error
stems from the finite range for the exponents. A number may lie beyond the range of the format
which leads to an overflow or underflow error.

Note that a number that is representable in a finite number of digits in one radix may require
an infinite number of digits in another radix. For example, if β = 3 then (0.1)β=3 =

(
1
3

)
β=10

=
(0.3333 · · ·)β=10, i.e. the number of digits is finite for β = 3 and infinite for β = 10. Similarly,
(0.1)β=10 = (0.00011001100110011001100 . . .)β=2. This means that the use of a finite number of
digits to represent a number in a certain radix may lead to errors that will not occur if another
radix is used. We will see the effect of these errors when we describe decimal floating point
arithmetic.

So far, the range of the exponents, significand width, and the choice of the radix in the system
were discussed independently. However, for a given number of bits in a format there is a tradeoff
between them. Recall the previously mentioned 32 bit format with 24 bits of unsigned mantissa,
7 bits of exponent, and one sign bit. The tradeoffs between the different factors are illustrated
by comparing a system with a radix of 16 (hexadecimal) against a system with a radix of 2
(binary system).

Largest Smallest Precision Accuracy
Number Number

Hexadecimal system 7.2× 1075 5.4× 10−79 16−6 2−21

Binary system 9.2× 1018 2.7× 10−20 2−24 2−24

While the hexadecimal system has the same resolution as binary, hex-normalization may result
in three leading zeros, whereas nonzero binary normalization never has leading zeros. Accuracy
is the guaranteed or minimum number of significant mantissa bits excluding any leading zeros.
This table indicates that for a given word length, there is a tradeoff between range and accuracy;
more accuracy (base 2) is associated with less range, and vice versa (base 16). There is quite a
bit of sacrifice in range for a little accuracy.

In base 2 systems there is also a property that can be used to increase the precision, a normalized
number must start by 1. In such a case, there is no need to store this 1 with the rest of the
bits. Rather, the number is stored starting from the following bit location and that 1 is assumed
to be there by the hardware or software manipulating the numbers. This 1 is what we earlier
termed the hidden one.

The literature about the precision of various floating-point number systems (17–21) and the size
of the significand part defines two kinds of representational errors: the maximum relative repre-
sentation error (MRRE) and the average relative representation error (ARRE). The terminology
and notation for those errors in the different papers of the literature are not consistent. Hence,
we use a simple notation where t is the significand bit width in a system with exponent base β
and derive the equations giving those two quantities for any real number x. Then, we proceed
to use them in our analysis of the binary and hex-based systems. We assume here that all the
t bits in the significand encode a single binary number. Formats that divide the significand into
sub-blocks (such as one decimal floating point format described later) need a slightly different
treatment.

Let x = fx×βexp be an exact representation of x assuming that fx has as many digits as needed
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(even an infinite number of digits if needed) but that fx is normalized according to the definition
1/β ≤ fx < 1 (the reader is urged to try the other definition of 1 ≤ fx < β to check that we
get similar results). Let the computer representation of x be fR × βexp. Then the error of the
representation is error(x) = |fxβexp − fRβexp|. The MRRE is defined as the maximum error
relative to x, i.e.

MRRE = max(
|fxβexp − fRβexp|

fxβexp
)

If the exact number is rounded to the nearest representation then the maximum error(x) is
equal to half the unit in the last position (ulp) or max(error(x)) = 1/2× 2−t × βexp. Thus,

MRRE = max(
1/2× 2−t

fx
)

The denominator should be set to its least possible value which occurs at fx = 1/β. Hence the
MRRE is given by

MRRE =
1/2× 2−t

1/β
= 2−t−1β

In the derivation of the formula for ARRE, we use half of the maximum error since it is assumed
that the error is uniform in the range [− 1

22−tβexp, 1
22−tβexp) for any specific fxβexp. As for the

distribution probability of the numbers fxβexp in the system, it is assumed to be logarithmic
and given by p(fx) = 1

fx ln β . This assumption is based on the work of McKeeman (21) who
suggested that “during the floating point calculations, the distribution of values tends to cluster
towards the lower end of the normalization range where the relative representation error tends
to be the largest.” To get the ARRE we perform the integration

ARRE =
∫ 1

1
β

1/2× (1/2× 2−t)
fx

1
fx lnβ

dfx

=
2−t

4 lnβ

∫ 1

1
β

dfx
f2
x

=
2−t

4 lnβ

[
−1
fx

]1

1
β

=
β − 1
4 lnβ

2−t

An analysis of both the MRRE and ARRE of the binary (β = 2) and hex-based (β = 16)
systems reveals that more bits are needed in the case of hexadecimal digits in order to have the
same or better relative errors. If β = 2k and the width is tk the formulas for MRRE and ARRE
become:

MRRE(tk, 2k) = 2−tk−12k

ARRE(tk, 2k) =
2k − 1
4k ln 2

2−tk

To have the same or better error for a base β = 2k in comparison to the binary-base (21),
the gaps between two successive floating-point numbers in the larger base must be less than or
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equal to the gaps in the binary-base. So, if the exponent in base β = 2k is ek then for base 21,
gap1 = (21)e12−t1 . For base 2k, gapk = (2k)ek2−tk . It should be noted that e1 = ek × k + q
where |q| < k. In fact with this definition, q is always a negative integer as illustrated by the
following simplified example

exp. mantissa
β = 16 101 0010xxxxxxx
β = 2 before normalization 10100 0010xxxxxxx
β = 2 after normalization 10010 10xxxxxxx

So, The potential left shift for normalization of up to k − 1 positions makes q negative and it
falls in the range −(k− 1) ≤ q ≤ 0. Specifically, in the case of k = 4, q ∈ {−3,−2,−1, 0}. With
that in mind, to have the same or better representation for the case of β = 2k the following
must hold:

gapk ≤ gap1

(2k)ek2−tk ≤ (2)e12−t1

kek − tk ≤ e1 − t1
kek − (kek + q) ≤ tk − t1

−q ≤ tk − t1

In order to have the last inequality true for all the values of q then

tk − t1 ≥ k − 1

If tk is chosen to be t1 + k − 1 and then substituted in the equation for MRRE, the maximum
relative representation error becomes

MRRE(tk, 2k) = 2−tk−12k

= 2−(tk−(k−1))

= 2−t1

which is intuitive. Equal gaps in both systems means that the same set of numbers out of the
real numbers range is being represented in both systems and hence the maximum representation
error must be equal.

The average relative representation errors on the other hand are not equal because of the different
distribution probability of the numbers. The ratio of ARRE(tk, 2k) to ARRE(t1, 21) is

ARRE(tk, 2k)
ARRE(t1, 21)

=
2k − 1
k2k−1

=
2
k

(1− 1
2k

)

So, for all k > 1, ARRE(tk, 2k) < ARRE(t1, 21).

Cody (19) tabulates (Table 2.1) the error as a function of the radix for three 32-bit floating
point formats having essentially identical range. (The base 2 entries in the table are without
use of the hidden one.)
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Table 2.1: Tarde-off between radix and representational errors
Maximum Average

Exponent Mantissa Relative Relative
Base Bits Range Bits Error Error

2 9 2255 ' 6× 1076 22 0.5× 2−21 0.18× 2−21

4 8 4127 ' 3× 1076 23 0.5× 2−21 0.14× 2−21

16 7 1663 ' 0.7× 1076 24 2−21 0.17× 2−21

According to Table 2.1, the binary system seems better in range and accuracy than the hexadec-
imal system. So why use hexadecimal radix at all? The answer is in the higher computational
speed associated with larger base value, as illustrated by the following example.

Example 2.9 Assume a 24-bit mantissa with all bits zero except the least significant
bit. Now, compare the maximum number of shifts required for each case of postnor-
malization.

Binary system: Radix = 2 and 23 shifts are required.

Hexadecimal system: Radix = 16 and we shift four bits at a time (since each hex-
adecimal digit is made of 4 bits) therefore, the maximum number of shifts is
five.

A higher base provides better results for speed. A hexadecimal-base is better than the binary-
base for the shifting needed in the alignment of the operands and in the normalization in case of
addition as discussed in section 2.5. If the exponent base is binary a shifter capable of shifting
to any bit position is needed. On the other hand, if the exponent base is hexadecimal, only
shifts to digit boundaries (4 bits boundaries) are needed.

Obviously, if we want to represent the same range in a hexadecimal-based and binary-based
system then the width of the exponent field in the hex format is two bits less than its counterpart
in the binary format. Those two bits are then used to increase the precision in the hex format
as indicated in Table 2.1.

?=⇒ Exercise 2.2 It is clear that two additional mantissa bits are not enough to
compensate for the loss in MRRE. Use our earlier analysis to indicate how
many bits are needed.

Garner (17) summarizes the tradeoffs:

“. . . the designer of a floating number system must make decisions affecting both
computational speed and accuracy. Better accuracy is obtained with small base val-
ues and sophisticated round-off algorithms, while computational speed is associated
with larger base values and crude round-off procedures such as truncation.”

We will come to the issue of rounding the result once we explore the errors inherent in the
calculations first.
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2.3.2 Loss of Significance

The following example illustrates a loss of significance inherent in floating point numbers.

Example 2.10 We assume here a system using the S/370 short format and performing
an addition.

A = 0.100000 ×161

B = 0.100000 ×16−10

}
Original Operands

A = 0.100000 ×161

B = 0.000000000001 ×161

}
Alignment

A+B = 0.100000000001 ×161 Addition
A+B = 0.100000 ×161 Postnormalization

Thus, A+B = A, while B 6= 0.

This violation of a basic law of algebra is characteristic of the approximations used in the floating
point system.

These approximations also lead to a violation of the property of associativity in addition.

Example 2.11 Assuming a decimal system with five digits after the point, check the
associativity with 1.12345× 101 + 1.00000× 104 − 1.00000× 104.
Solution: Given only five decimal digits, the result of

(1.12345× 101 + 1.00000× 104)− 1.00000× 104 = 1.00112× 104 − 1.00000× 104

= 1.12000× 101.

On the other hand, the result of

1.12345× 101 + (1.00000× 104 − 1.00000× 104) = 1.12345× 101 + 0
= 1.12345× 101.

Associativity fails and the first answer lost three digits of significance.

?=⇒ Exercise 2.3 Provide an example where the associativity of addition fails in
a floating point system and the answer loses all the digits of significance.

The following example (22) illustrates another loss of significance problem.
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Example 2.12 Assume that two numbers are different by less than 2−24. (The
representation is the ibm System 370 short format.)

A = 0.1 0 0 0 0 0 × 161

B = 0.F F F F F F × 160.

When one is subtracted from the other, the smaller must be shifted right to align the
radix points. (Note that the least significant digit of B is now lost.)

A = 0.1 0 0 0 0 0 ×161

B = 0.0 F F F F F×161

A−B = 0.0 0 0 0 0 1 ×161 = 0.1× 16−4.

Now let us calculate the error generated due to loss of digits in the smaller number.
The result is (assuming infinite precision):

A = 0.1 0 0 0 0 0 0 ×161

B = 0.0 F F F F F F×161

A−B = 0.0 0 0 0 0 0 1 ×161 = 0.1× 16−5.

Thus, the loss of significance (error) is 0.1×16−4−0.1×16−5 = 0.F×16−5 = 93.75% of
the correct result. Quite a large relative error!

An obvious solution to this problem is a guard digit, that is, additional bits are used to the
right of the mantissa to hold intermediate results. In the ibm format, an additional 4 bits (one
hexadecimal digit) are appended to the 24 bits of the mantissa. Thus, with a guard digit the
above example will produce no error.

On first thought, one might think that in order to obtain maximum accuracy it is necessary to
equate the number of guard bits to the number of bits in the mantissa. All these guard bits
are shifted in when a massive cancellation of the most significant bits occur. Let us check this
further.

?=⇒ Exercise 2.4 A cancellation occurs only in the case of a subtraction. In
a non-redundant representation, what is the necessary condition on the
exponent difference of the two operands so that there is a possibility of
canceling more than one digit at the most significant side? Based on your
answer, prove that only one guard digit is needed for the case of massive
cancellation?

The addition, multiplication, and division operations never exhibit this massive cancellation
and hence this sort of loss of significance does not affect them. In fact, we analyze the possible
ranges for the results of the various operations in section 2.5 for the case of normalized numbers.
None of those ranges for any operation (with the exception of subtraction which we have just
analyzed now) involves a massive cancellation that leads to a significance loss. Thus, regardless
of the operation, no more than one guard digit will enter the final significant result.

To correctly round the result, we must keep some information about the remaining digits beyond
the guard digit.



46 CHAPTER 2. FLOATING OVER THE VAST SEAS

2.3.3 Rounding: Mapping the Reals into the Floating Point Numbers

Rounding in floating point arithmetic (23) and the associated error analysis (20) are probably
among the most discussed subjects in floating point literature. Garner (17) provides an extensive
list of early papers on the subject.

The following formal definition of rounding is taken from Yohe (23):

Let < be the real number system and let M be the set of machine representable
numbers. A mapping Round : < → M is said to be rounding if, ∀a, b ∈ < where
Round(a) ∈M , and Round(b) ∈M we have:

Round(a) ≤ Round(b) whenever a ≤ b.

Further: A rounding is called optimal if ∀a ∈M , Round(a) = a.

“Optimal” implies that if a ∈ < and m1, m2 are consecutive members of M with m1 < a <
m2, then Round(a) = m1 or Round(a) = m2. Rounding is symmetric if Round(a) =
−Round(−a). For example, Round(39.2) = −Round(−39.2) = 39.

Several optimal rounding methods may be defined for all a ∈ <.

1. Downward directed rounding: 5a ≤ a. This mode is also called round towards minus
infinity (RM).

2. Upward directed rounding: 4a ≥ a. This mode is also called round towards plus infinity
(RP).

3. Truncation (T), which truncates the digits beyond the rounding point.

4. Rounding toward zero (RZ). In the case of traditional signed magnitute notation such
as the one humans use when writing or the one that the ieee standard (discussed in
section 2.4) defines, rounding toward zero is equivalent to truncation.

5. Augmentation or rounding away from zero (RA).

6. Rounding to nearest up (RNU), which selects the closest machine number, and in the case
of a tie selects the number whose magnitude is larger. The word “up” in the name is only
really accurate if the number is positive. Hence, we will refer to this as round to nearest
away (RNA) since it results in the number further away from zero.

The last rounding (RNA) is the most frequently used in human calculations since it produces
maximum accuracy. However, since this round to nearest away (RNA) produces a consistent
bias in the result, the ieee standard uses a variation where the case of a tie is rounded to the
even number: the number with a LSB equal to 0. This latter rounding is called round to nearest
even (RNE). The accuracy of both RNA and RNE on a single computation is the same. It is
only on a series of computations that the bias of RNA creeps in. RNE is an example of an
unbiased rounding. Another example of unbiased rounding is the Round to Nearest Odd (RNO)
which is similar but rounds to the number with LSB equal to one in case of ties. On the other
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hand, another example of biased rounding is the Round to Nearest with ties resolved towards
zero (RNZ). This RNZ gives the nearest representable number as the result and in the case of
a tie the result is the representable number closer to zero.

The two directed roundings 5 and 4, while not widely available outside of the ieee standard,
are very important in interval arithmetic which is a procedure for computing an upper and lower
bound on the true value of a computation. These bounds define an interval which contains the
true result.

Example 2.13 Some of the preceding rounding methods are illustrated here using a
simple decimal format.

Number 5 4 RZ RA RNA RNE
+38.7 +38 +39 +38 +39 +39 +39
+38.5 +38 +39 +38 +39 +39 +38
+38.2 +38 +39 +38 +39 +38 +38
+38.0 +38 +38 +38 +38 +38 +38
−38.0 −38 −38 −38 −38 −38 −38
−38.2 −39 −38 −38 −39 −38 −38
−38.5 −39 −38 −38 −39 −39 −38
−38.7 −39 −38 −38 −39 −39 −39

This example clarifies a few points:

• Obviously, the 5 and 4 methods are not symmetric roundings and they depend on the
sign of the number. The other methods only depend on the magnitude.

• RNA and RNE only differ in the case of a tie when the larger number is odd. Hence, 39.5
rounds to 40 for both RNA and RNE.

• In the cases presented, the RZ method is the easiest from a computation point of view
since it is actually a simple truncation.

Fig. 2.1 presents the rounding methods in a graphical manner. The process of rounding maps
a range of real numbers to a specific floating point number. Depending on the format used,
that floating point number may be normalized or unnormalized, it may use sign and magnitude
notation for the significand or it may use other encodings.

?=⇒ Exercise 2.5 Based on Fig. 2.1, give 5(a) and 4(a) in terms of RZ(a) and
RA(a) when a > 0. Do the same when a < 0.

?=⇒ Exercise 2.6 If your hardware only has 5(a), how can you get 4(a) for any
a?

?=⇒ Exercise 2.7 For a specific number a, what is the relation between 5(a) and
4(a)?

?=⇒ Exercise 2.8 Similarly, for a specific number a, what is the relation between
RA(a) and RZ(a)?

Fig. 2.1 clarifies the definitions of the various rounding methods regardless of the specific details
of how a floating point number is represented. The specific bit manipulation leading to a certain
rounding method in a given floating point format depends on the encoding used in that format.
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Figure 2.1: Rounding methods on the real number axis. Large tick marks indicate representable
numbers, short tick marks indicate the real number exactly in the middle between two repre-
sentable numbers, and the x marks represent other possible locations of real numbers. Note the
difference between RNE, RNA, and RNZ in tie cases.

Example 2.14 To illustrate the issue of representation, indicate what is the effect
of truncating the LSB in the binary number 1.101 to become 1.10 assuming it is
represented as sign-magnitude (bit to the left of the point is sign), two’s complement,
ones complement, or excess-code (assume in this case the excess is 0.11 in binary).
Solution: The encodings lead to different values of the original and truncated bit pat-
terns.

Code Original value Truncated value Truncated ≤ Original
S-M −0.625 −0.5 No
2’s −0.375 −0.5 Yes
1s −0.25 −0.25 Yes
excess +0.825 +0.75 Yes

Our understanding of Fig. 2.1 leads us to correctly indicate the rounding method corresponding
to each of the encodings in the example. In the case of two’s complement, any bit except the
MSB has a positive weight and it increases the value of the number if it is one. Hence, the
truncation of such a bit, which is equivalent to making it zero, either retains the current value
of the number or reduces it. This is the definition of RM. Similarly, for ones complement and
excess-code, the truncation is equivalent to RM. On the other hand, in sign-magnitude notation,
the truncation merely decreases the magnitude or the absolute value of the number. Hence, if
the number is negative its truncated value is actually larger as shown in the example. Truncation
is equal to RZ in a sign-magnitude notation.

2.4 History of floating point standards

It must be clear to the reader by now that if we want to use a floating point system, we
need to define several aspects. Those include the radix of the number system, the location of
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the fractional point and whether the numbers are normalized or not. Because of this need,
several formats arose in the history of computer arithmetic. Some of those formats were de
facto standards used by large companies such as the ibm formats and some were developed by
standardization bodies such as the Institute of Electrical and Electronics Engineers (ieee). The
ieee standard was developed in order to support portability between computers from different
manufacturers as well as different programming languages. It emphasizes issues such as rounding
the numbers correctly to get reliable answers. At the time of this writing, the ieee standard is
the most widely used in general purpose computation. Hence it will be explained in more detail
and contrasted to other formats.

The ieee produced a standard (ieee 754) for binary floating point arithmetic in 1985 (24) and
a second complementary standard (ieee 854) for radix independent floating point arithmetic
in 1987 (25). Both standards propose two formats for the numbers: a single and a double.
The single format of the binary ieee 754 standard has 32 bits while the double has 64 bits.
A revision of the ieee 754 standard started in 2001 to correct, expand, and update the old
standard. Mainly, the revision tried to incorporate aspects of the ieee 854, add some of the
technical advances that occured since the publication of the original standard, and correct some
of the past mistakes. The revised standard (ieee 754–2008) appeared in 2008 (26). During the
revision process, it became clear that a simple merge between ieee 754 and ieee 854 is not
satisfactory. The committee decided to use ieee 754 as the base document and to amend it.
Probably the largest addition in ieee 754–2008 is the inclusion of decimal floating point, not
just binary, and a large number of associated operations. The change of the binary formats
names is another noticeable difference to the users of the 1985 and 2008 standards. To have
a consistent naming convention, the committee decided to clearly indicate the implied radix of
the format (either binary or decimal) and the number of bits in the format (32, 64, or 128).
What used to be called the single and double format in ieee 754–1985 is now called binary32
and binary64 in ieee 754–2008. Though noticeable, this change of names bears no technical
importance. In fact, the ieee 754–2008 standard clearly states “The names used for formats in
this standard are not necessarily those used in programming environments.” There are several
other changes that will be explained in the coming few sections. For a complete evaluation of
the changes, the reader should consult the two documents. In the following discussion, unless
explicitly stated otherwise, “ieee standard” refers to the ieee 754–2008.

The ieee standard refers to multiple levels of specifications as a systematic way to approximate
real numbers. The first level is the one corresponding to mathematics, i.e. the real numbers
as well as the positive and negative infinities. The rounding operation that fits the infinite set
of mathematical numbers into a finite set defines the second level named floating point data.
The second level includes a special symbol to represent any entity that is not a number which
might arise from invalid operations for example as we will see later. A single finite number from
level two such as −12.56 may have multiple representations as in −1.256× 101, −125.6× 10−1,
or −12560000 × 10−6. Those various equivalent representations define level three. Finally, the
fourth level specifies the exact bit pattern encoding of the representation given in level three.
We will now explore the specific bit representations defined.

2.4.1 IEEE binary formats

Fig. 2.2 presents the single and double binary formats of ieee 754–1985 which were retained as
is in ieee 754–2008. The binary128 is a new format in ieee 754–2008. The most significant
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Sign Biased exponent Significand = 1.f (the ‘1’ is hidden)

± e + bias f

32 bits: 8 bits, bias = 127 23 + 1 bits, single-precision or short format
64 bits: 11 bits, bias = 1023 52 + 1 bits, double-precision or long format

128 bits: 15 bits, bias = 16383 112 + 1 bits, quad-precision

Figure 2.2: ieee single (binary32), double (binary64), and quad (binary128) floating point
number formats.

Table 2.2: Maximum and minimum exponents in the binary ieee formats.
Parameter binary32 binary64 binary128
Exponent width in bits 8 11 15
Exponent bias +127 +1023 16383
expmax +127 +1023 16383
expmin −126 −1022 −16382

bit is the sign bit (sign) which indicates a negative number if it is set to 1. The following
field denotes the exponent (exp) with a constant bias added to it. The remaining part of the
number is the significand normalized to have one non-zero bit to the left of the floating point.
Since this is a non-redundant binary system, any bit is either 0 or 1. Hence, the normalized
numbers must have a bit of value 1 to the left of the floating point. The value of the bit is
always known and thus there is no need to store it and it is implied. This implicit bit is called
the ‘hidden 1.’ Only the fractional part (f) of the significand is then stored in the standard
format. The standard calls the significand without its MSD the trailing significand. To sum
up, the normalized number given by the binary standard format has (−1)sign × 2exp × 1.f as a
value.

The biased exponent has two values reserved for special uses: the all ones and the all zeros.
For the binary32 format those values are 255 and 0 giving a maximum allowed real exponent
(expmax) of 254−127 = 127 and a minimum exponent (expmin) of −126. Table 2.2 summarizes
the maximum and minimum exponents for the binary formats. Note that the standard defines
the bias and expmax to be equal while expmin = 1− expmax.

?=⇒ Exercise 2.9 If the exponent field has w bits, use Table 2.2 to deduce the
relation giving the bias and the maximum and minimum biased exponents
in terms of w.

As for the special values, their interpretation is as shown in Table 2.3. If the exponent field
is all ones and the trailing significand field is not zero then this represents what is called ‘Not
a Number’ or NaN in the standard. This is a symbolic entity that might arise from invalid
operations such as +∞−∞.

If the exponent field is zero and the trailing significand field is not zero then it represents a
subnormal number (was called denormalized number in ieee 754–1985) which is defined in the
standard as: “In a particular format, a non-zero floating-point number with magnitude less than
the magnitude of that format’s smallest normal number. A subnormal number does not use the
full precision available to normal numbers of the same format.” Then the standard specifies the
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Table 2.3: Encodings of the special values and their meanings.
Exponent bits Fraction bits Meaning
All ones all zeros ±∞ (depending on the sign bit)
All ones non zero NaN (Not a Number)
All zeros all zeros ±0 (depending on the sign bit)
All zeros non zero subnormal numbers

value of a binary subnormal number as (−1)sign × 2expmin(0.f).

Example 2.15 According to this definition the following bit string

0 1 8 9 31

0︸ ︷︷ ︸ 0 . . . . . . . . . . . . . . . 0︸ ︷︷ ︸ 010 . . . . . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
sign (bias= 127) significand

is equal to 2−126 × 0.01 = 2−128.

?=⇒ Exercise 2.10 It is important to note that the biased exponent for the sub-
normal numbers is zero, yet we use 2−126 and not 2−127 as the scaling factor
(2−1022 not 2−1023 for the binary64 format and 2−16382 not 2−16383 for the
binary128 format). Can you figure out why it is defined this way in the
standard?

The subnormal numbers provide a property called gradual underflow which we will detail in
section 2.6.

In addition to the three basic binary formats (binary32, binary64, and binary128), the standard
also recommends a way to extend those formats in a systematic manner. For these extended
cases, if the total number of bits is k, the number of bits in the exponent field is w, and the
trailing significand’s number of bits is t then the following relations should hold true (where
round( ) rounds to the nearest integer).

w = round (4× log2(k))− 13
t = k − w − 1

bias = 2w−1 − 1
expmax = 2w−1 − 1
expmin = 1− expmax = 2− 2w−1

These relations are defined for the cases where k is both ≥ 128 and a multiple of 32. They
extrapolate the values defined in the standard for k = 64 and k = 128.

2.4.2 Prior formats

Table 2.4 shows the details of three formats that were at some point in time de facto competing
standards. From the table we see that there is hardly any similarity between the various formats.



52 CHAPTER 2. FLOATING OVER THE VAST SEAS

Table 2.4: Comparison of floating point specification for three popular computers.
ibm S/370 dec pdp-11 cdc Cyber 70

S = Short S = Short
L = Long L =Long

Word length S: 32 bits S: 32 bits 60 bits
L: 64 bits L: 64 bits

Exponent 7 bits 8 bits 11 bits
Significand S: 6 digits S: (1)+23 bits 48 bits

L: 14 digits L: (1)+55 bits
Bias of exponent 64 128 1024
Radix 16 2 2
Hidden ‘1’ No Yes No
Radix point Left of Fraction Left of hidden ‘1’ Right of MSB of Fraction
Range of Fraction (F) (1/16) ≤ F < 1 0.5 ≤ F < 1 1 ≤ F < 2
F representation Signed magnitude Signed magnitude One’s complement
Approximate max. 1663 ' 1076 2126 ' 1038 21023 ' 10307

positive number*
Precision S: 16−6 ' 10−7 S: 2−24 ' 10−7 2−48 ' 10−14

L: 16−14 ' 10−17 L: 2−56 ' 10−17

Approximate maximum positive number for the dec pdp-11 is 2126, as 127 is a reserved exponent.

This situation, which prohibits data portability produced by numerical software, was the main
motivation in 1978 for setting up an ieee (Computer Society) committee to standardize floating
point arithmetic. The main goal of the standardization efforts was to establish a standard which
will allow communication between systems at the data level without the need for conversion.

In addition to the respectable goal of “the same format for all computers,” the committee wanted
to ensure that it would be the best possible standard for a given number of bits. Specifically,
the concern was to ensure correct results, that is, the same as those given by the corresponding
infinite precision with a maximum error of 1/2 of the LSB. Furthermore, to ensure portability of
all numerical data, the committee specified exceptional conditions and what to do in each case
(overflow, underflow, etc.). Finally, it was desirable to make possible future extensions of the
standard such as interval arithmetic which lead to more accurate and reliable computations.

The ieee Computer Society received several proposals for standard representations for con-
sideration; however, the most complete was the one prepared by Kahan, Coonen, Stone, and
Palmer (27). This proposal became the basis for the ieee standard (ieee 754–1985) floating
point representation.

By a simple comparison, it should be clear that the ieee formats (at least the single format) is
very similar to that of the pdp-11 and the vax machines from the (former) Digital Equipment
Corporation (dec), but it is not identical. For example, the ieee true significand is in the range
[1, 2(, whereas the dec significand ∈ [0.5, 1(.

For the ieee, the biased exponent is an 8-bit number between 0 and 255 with the end values
of 0 and 255 used for reserved operands. The ieee bias is 127 so the true exponent is such that
−126 < expieee < 127. The dec format also reserves the end values of the exponent range but
uses a bias of 128. Hence, the true exponent range is −127 < expdec < 126. The dec decoding
of the reserved operands is also different. Table 2.5 illustrates this difference.



2.4. HISTORY OF FLOATING POINT STANDARDS 53

Table 2.5: ieee and dec decoding of the reserved operands (illustrated with the single format).
S Biased Exp Significand Interpretation
0 0 0 +Zero
1 0 0 −Zero

0/1 0 Not 0 ±Denormalized Numbers ieee
0 255 0 +Infinity
1 255 0 −Infinity
X 255 Not 0 NaN (Not a Number)
S Biased Exp Significand Interpretation
0 0 Don’t care Unsigned zero dec
1 0 Don’t care General purpose

reserved operands

?=⇒ Exercise 2.11 Find the value of max and min (largest and smallest repre-
sentable numbers) for single and double precision in the following systems:

1. IEEE standard,

2. System/370, and

3. PDP-11.

2.4.3 Comparing the different systems

In light of the previous discussion, let us analyze the good and bad points of each of the above
three popular formats from Table 2.4 as well as the ieee standard.

Representation Error: According to Ginsberg (28), the combination of base 16, short man-
tissa size, and truncated arithmetic should definitely be avoided. This criticism is of the
ibm short format where, due to the hexadecimal base, the MRRE is 2−21. By contrast, the
23 bits combined with the hidden ‘1’ (as on pdp-11) seems to be a more sensible tradeoff
between range and precision in a 32 bit word, with MRRE of 2−24.

Range: While the pdp-11 scores well on its precision on the single format, it loses on its double
format. In a 64 bit word, the tradeoff between range and precision is unbalanced and more
exponent range should be given at the expense of precision. The exponent range of the
CYBER 70 seems to be more appropriate for the majority of scientific applications.

Rounding: None of the three formats uses an unbiased rounding to the nearest machine number
in case of ties (28).

Implementation: The advantage of a radix 16 format (as in ibm S/370) over a radix 2 format
is the relative ease of implementation of addition and subtraction. Radix 16 simplifies the
shifter hardware, since shifts can only be made on 4 bit boundaries, while radix 2 formats
must accommodate shifts to any bit position.

It is clear from this simple comparison that the ieee 754–1985 attempted to benefit from the
earlier experience and pick the best points in each of the earlier formats as much as possible.
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However, it is not completely fault free. Several critical points were voiced over the years. As
time passed, that standard proved right on some issues and deficient on others.

2.4.4 Who needs decimal and why?

The radix independent ieee 854 standard of 1987 did not receive a wide adoption in the industry
because the hardware necessarily implements a specific radix. On the other hand, a binary radix
is easily adapted to digital electronic devices hence the ieee 754-1985 quickly became a succesful
standard. The most important radix beside binary is decimal. Decimal is the natural system
for humans hence it is the de facto standard for input to and output from computer programs.
But, beside data inspection decimal is important for other reasons that we will explore here.

We have already seen that the fraction 1/10 is easily described in decimal as (0.1)β=10 while in bi-
nary it leads to a representation with an infinite number of bits as (0.0001100110011001100 . . .)β=2

which the computer rounds into a finite representation.

?=⇒ Exercise 2.12 Write the bits that represent the fraction 1/10 in the binary32
and binary64 formats of IEEE 754 assuming that round to nearest even is
used when converting from decimal to binary.

The representational error due to conversion may lead to incorrect computational results even if
the subsequent arithmetic is correct. A human using a spreadsheet program would expect that
if x is set to 0.10 and y to 0.30 then 3x − y = 0.0 or that three dimes equal thirty cents. A
computer using binary arithmetic has a different opinion: 3x − y = 5.6 × 10−17. Furthermore,
2x− y + x = 2.8× 10−17. Leading to the wonderful surprise that

3x− y
2x− y + x

∣∣∣∣
(x=0.1,y=0.3)

= 2 !

?=⇒ Exercise 2.13 Given that 0.3 = (0.0100110011001100 . . .)β=2, explain why a
computer using the double precision (binary64) and round to nearest even
leads to that “surprise”.

The attentive reader will note from the solution of the previous exercise that the sequence of
steps to get 3x − y when x is set to 0.1 and y to 0.3 have a rounding error in the calculation
of 3x. However, the calculation of 2x − y + x is exact without any rounding errors during the
calculation. The strange result of 2x−y+x 6= 0 is due to the rounding errors during conversion.
With a decimal radix, such surprises that arise from the errors in conversion do not exist. A
decimal radix will also give a correct result for 3x− y.

A decimal radix is not a solution to everything in life though. A human calculates (4/3−1)×3−1
as equal to zero. A computer with a finite representation whether using binary or decimal radix
yields an incorrect result. Again, the reader is invited to check that simple calculation using a
short computer program or a spreadsheet. With binary64 the result is ≈ −2.220446× 10−16.

Ten is the natural number base or radix for humans resulting in a decimal number system while
a binary system is natural to computers. In the early days of digital computers, to suite the data
provided by the human users many machines included circuits to perform operations on decimal
numbers (29). Decimal numbers were used even for the memory addressing and partitioning. In
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his seminal paper in 1959, Buchholz (30) presented many persuasive arguments for using binary
representations instead of decimal for such machine related issues as memory addressing.

Buchholz states that “a computer which is to find application in the processing of large files of
information and in extensive man-machine communication, must be adept at handling data in
human-readable form. This includes decimal numbers, alphabetic descriptions, and punctuation
marks. Since the volume of data may be great, it is important that binary-decimal and other
conversions not become a burden which greatly reduces the effective speed of the computer.”

Buchholz concludes that “a combination of binary and decimal arithmetic in a single computer
provides a high-performance tool for many diverse applications. It may be noted that the
conclusion might not be the same for computers with a restricted range of functions or with
performance goals limited in the interest of economy; the difference between binary and decimal
operation might well be considered too small to justify incorporating both. The conclusion does
appear valid for high-performance computers regardless of whether they are aimed primarily at
scientific computing, business data processing, or real-time control.”

Due to the limited capacities of the first integrated circuits in the 1960s and later years, most
machines adopted the use of dedicated circuits for binary numbers and dropped decimal num-
bers. With the much higher capabilities of current processors and the large increase in financial
and human oriented applications over the Internet, decimal is regaining its due place. The
largest change in the 2008 revision of the ieee standard for floating point arithmetic (26) is the
introduction of the decimal floating point formats and the associated operations. Whether in
software or hardware, a standard to represent the decimal data and determine the manner of
handling exceptional cases in operations is important.

We have just seen that simple decimal fractions such as 1/10 which might represent a tax amount
or a sales discount yield an infinitely recurring number if converted to a binary representation.
Hence, a binary number system with a finite number of bits cannot accurately represent such
fractions. When an approximated representation is used in a series of computations, the final
result may deviate from the correct result expected by a human and required by the law (31; 32).
One study (33) shows that in a large billing application such an error may be up to $5 million
per year.

Banking, billing, and other financial applications use decimal extensively. Such applications
may rely on a low-level decimal software library or use dedicated hardware circuits to perform
the basic decimal arithmetic operations. Two software libraries were proposed to implement
the decimal formats of the ieee standard 754-2008: one using the densely packed decimal
encoding (34) and the other using the binary encoded decimal format (35) which is widely
known as the Binary Integer Decimal (BID) encoding. Those two encodings are defined in the
standard and will be explained shortly. Hardware designs were also proposed for addition (36),
multiplication (37; 38), division (39; 40), square root (41), as well as complete processors (42).

A benchmarking study (43) estimates that many financial applications spend over 75% of their
execution time in Decimal Floating Point (DFP) functions. For this class of applications, the
speedup resulting from the use of a fast hardware implementation versus a pure software imple-
mentation ranges from a factor of 5.3 to a factor of 31.2 depending on the specific application
running. This speedup is for the complete application including the non-decimal parts of the
code. Energy savings for the whole application due to the use of dedicated hardware instead of
a software layer are of the same order of magnitude as the time savings.
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2.4.5 IEEE decimal formats

In the ieee standard, a finite representable number in base β (β is 2 or 10) has a sign s (0
for positive and 1 for negative), an exponent e, and a significand m to represent its value as
(−1)s×βe×m. The significand m contains p digits and has an implicit fractional point between
its most significant digit and the next lower significant digit. Another permissible view in the
standard is to consider the significand as an integer with the implicit fraction point to the right
of all the digits and to change the exponent accordingly. The significand considered as an integer
c would thus have a corresponding exponent q = e − (p − 1) and the value of the number is
(−1)s × βq × c.

Decimal formats differ from binary ones in the fact that they are not necessarily normalized with
one non-zero digit to the left of the fractional point. Several different representations of the same
number are allowed including ones that have leading zeros. For example, 0.000000123456789×
100, 0.000012345678900× 10−2, and 1.234567890000000× 10−7 are all representable. They are
members of the same ‘cohort’: the set of all floating-point representations that represent a given
floating-point number in a given floating-point format.

This choice for decimal formats follows the human practice. In physical measurements, we
distinguish between the case when the mass of a body is reported as 0.050 kg versus 0.05 kg and
say that the first measurement is accurate to the nearest gram while the second is only accurate
to the nearest ten grams. If both measurements are stored in a normalized form within the
computer as 5×10−2 they become undistiguishable. Furthermore, storing them in a format with
16 digits as normalized numbers (5.000000000000000× 10−2) may give the incorrect impression
that both measurements were done to a much higher accuracy (0.050000000000000 kg) than
what really occured. To maintain the distinction, we should store the first measurement as
0.000000000000050 × 1012 and the second measurement as 0.000000000000005 × 1013 with all
those leading zeros. Both are members of the same cohort. A higher software application layer
might make the distinction to a user.

The IEEE standard supports these distinctions by allowing for unnormalized representations.
Furthermore, the view of the significand as an integer c with the corresponding exponent q is
the ‘natural’ view used for decimal parts within the standard.

?=⇒ Exercise 2.14 In a decimal format with p digits (decimal64 has 16 digits
for example as will be defined shortly), if a finite non-zero number has n
decimal digits from its most significant non-zero digit to its least significant
non-zero digit with n < p, how many representations are in the cohort of
this number?

Fig. 2.3 presents the decimal64 and decimal128 formats of the IEEE standard. For decimal,
the field encoding the exponent information is explicitly named the combination field since it
encodes the exponent, some special cases, and the most significant four bits of the significand.
When the most significant five bits of the combination field are 11111 the format encodes Not-a-
Number (NaN) which is generated when an invalid operation occurs for example. On the other
hand, if those bits are 11110 the encoded value is ±∞ depending on the sign bit. If neither
of those special cases exists, the combination field encodes the exponent q and four significand
bits. The possible negative and positive values of the exponent are excess-coded by adding a
bias to the exponent value and representing E = q + bias.

When the total number of bits is k (a multiple of 32), the number of bits in the combination
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Sign Combination Trailing Significand

± exponent and MSD t = 10J bits

64 bits: 1 bit 13 bits, bias = 398 50 bits, 15 + 1 digits
128 bits: 1 bit 17 bits, bias = 6176 110 bits, 33 + 1 digits

Figure 2.3: IEEE decimal64 and decimal128 floating point formats.

field is w + 5, the trailing significand’s number of bits is t, and the number of representable
significand digits is p, the standard defines:

w = k
16 + 4

t = k − w − 6 = 15k
16 − 10

p = 3t
10 + 1 = 9k

32 − 2
expmax = 3× 2w−1

expmin = 1− expmax

bias = expmax + p− 2
expmin ≤ q + (p− 1) ≤ expmax

The standard specifies two basic decimal formats with k = 64 and k = 128 as shown in Fig. 2.3.
The previous relations provide also for shorter (such as decimal32) and longer values as possible
interchange formats to support the exchange of data between implementations.

Those relations also ensure that t the number of bits in the trailing significand is always an exact
multiple of 10. This is essential since there are two different encodings defined for this field. The
binary encoding concatenates the four most significant bits of the significand generated from
the combination field to the trailing signifcand field and considers the whole as an integer in
unsigned binary notation. The decimal encoding considers each 10 bits of the trailing significand
to be a ‘declet’ encoding three decimal digits in the densely packed decimal format (44). The
decoding of the three digits or their encoding back into a declet requires only a few simple
boolean logic gates.

The binary encoding of the significand is potentially faster in the case of a software implemen-
tation of the standard since the regular integer instructions may be used to manipulate the
significand field. The main advantage for the decimal encoding in hardware implementations is
that it keeps the decimal digit boundaries accessible. Such accessibility simplifies the shifting of
operands by a specific number of digits as well as the rounding of the result at the exact decimal
digit boundary required by the standard. The decimal encoding also makes the conversion from
or to character strings trivial.

2.5 Floating Point Operations

The standard specifies “Each of the computational operations that return a numeric result
specified by this standard shall be performed as if it first produced an intermediate result correct
to infinite precision and with unbounded range, and then rounded that intermediate result, if
necessary, to fit in the destination’s format”. The basic mandated arithmetic operations are:
addition, subtraction, multiplication, division, square root, and fused multiply add (multiply
then add both implemented as if with unbounded range and precision with only a single rounding
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after the addition). The standard also defines many other operations for the conversions between
formats and for the comparisons of floating point data.

Since the standard allows multiple representations for the same value in decimal formats, it
defines a ‘preferred exponent’ for the result of the operations to select the appropriate member
of the result’s cohort. If the result of an operation is inexact the cohort member of least possible
exponent (i.e. the one where the MSD of the n digits of exercise 2.14 coincides with the MSD
of the p digits) is used to get the maximum number of significant digits. If the result is exact,
the cohort member is selected based on the preferred exponent for the operation.

In this section, we introduce some simple ideas to compute the basic arithmetic operations in
just enough detail to analyze the resulting consequences.

To simplify this first exposition, we assume that the inputs follow the ieee definition of signifi-
cands where β−(p−1) ≤ m < β and that normalized operands have the definition 1 ≤ m < β.

2.5.1 Addition and Subtraction

Addition and subtraction require that the exponents of the two operands be equal. This align-
ment is accomplished by shifting the mantissa of the smaller operand to the right, while pro-
portionally increasing its exponent until it is equal to the exponent of the larger number.

Example 2.16 Assuming a system with four significand digits, calculate 1.324×105 +
1.516× 103.
Solution: As mentioned above, the first step is to align the operands. Then, we do
the calculation.

1.324 ×105

+ 1.516 ×103


1.324 ×105

+ 0.01516 ×105

1.33916 ×105

≈ 1.339 ×105

?=⇒ Exercise 2.15 In general scientific notation, the alignment could be accom-
plished by the converse proposition, that is, shift the mantissa of the larger
number left, while decreasing its exponent. In the case of normalized in-
puts, why does the floating point hardware shift the smaller number to the
right and not the larger to the left?

If the inputs are not normalized and the larger number has leading zeros then the alignment
process becomes more difficult.



2.5. FLOATING POINT OPERATIONS 59

Example 2.17 Assuming a system with eight significand digits, calculate 0.0001324×
105 + 0.0001516× 103 as well as 0.1324567× 105 + 0.1516123× 103.
Solution: In the first case, if we shift the smaller number to the right we will drop
some digits and the result is inexact. However, it is possible to decrease the exponent
of the larger number by shifting it to the left as long as it does not overflow.

0.0001324 ×105

+ 0.0001516 ×103


0.0132400 ×103

+ 0.0001516 ×103

0.0133916 ×103

This yields an exact result within the number of digits available.
In the second case, however, it is not possible to shift the larger number to the left
by the amount of the exponent difference since it will overflow. To minimize the loss
due to rounding, we can shift the larger number as much as possible to the left then
shift the smaller number to the right by the remaining amount to achieve the required
alignment.

0.1324567 ×105

+ 0.1516123 ×103


1.3245670 ×104

+ 0.01516123 ×104

1.33972823 ×104

≈ 1.3397282 ×104

After the alignment, the two mantissas are added (or subtracted), and the resultant number, with
the common exponent, is normalized if needed. The latter operation is called postnormalization
or sometimes just normalization. Such a normalization is necessary if the implemented system
requires normalized results (as in the ieee binary formats) and the result has leading zeros.

Example 2.18 Calculate 1.324× 103 − 1.321× 103.
Solution: For a subtraction we use the radix complement.

1.324 ×103

− 1.321 ×103


1.324 ×103

+ 8.679 ×103

0.003 ×103

= 3.000 ×100

As seen from the example, in subtraction, the maximum shift (for a nonzero result) required on
postnormalization is equal to the number of mantissa digits minus one. The hardware must thus
detect the position of the leading non-zero digit to shift the result (to the left this time) and
adjust the exponent accordingly. The subtraction may produce the special case of a zero result,
whereby, instead of shifting, we should generate a ‘canonical zero’: the bit pattern corresponding
to absolute zero as specified in the standard we are implementing.

?=⇒ Exercise 2.16 In the addition operation within a normalized system, the
postnormalization is a maximum of one right-shifted digit. Why? Is it still
true if the system does not require normalized numbers as is the case of
IEEE decimal formats?
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2.5.2 Multiplication

Multiplication in floating point is conceptually easier than addition. No alignment is necessary.
We multiply the significands m1 and m2 as if they were fixed point integers and simply add the
exponents. Since floating point formats usually use a biased exponent, we must decrement the
sum of the two biased exponents by the value of the bias in order to get a correct representation
for the exponent of the result.

Example 2.19 If two operands in the ieee binary32 format have the biased exponents
128 and 130, what is the exponent of the result?
Solution: The ieee binary32 format has an exponent bias of 127. So, those biased
exponents represent true exponents of 1 and 3 respectively. Obviously, the exponent
of the result should be 4.
If we add the two biased exponents we get (1+127)+(3+127) = (4+2×127). We must
decrement this sum by the bias value to get a correct characteristic representation of
(4 + 127) = 131.

?=⇒ Exercise 2.17 In the addition and subtraction operations, we did not need
to add or decrement the bias. Why?

?=⇒ Exercise 2.18 Given normalized inputs only, can the exponent of the result
in a multiplication overflow or underflow?

The sign bit of the result is equal to the XOR of the two operand signs while the resultant
significand depends on the two operands. For non-zero numbers, β−(p−1) ≤ m1 < β and
β−(p−1) ≤ m2 < β so the initial resultant significand is in one of the following ranges:

β−(2p−2) ≤ m1 ×m2 < β−(p−1): We should shift the resultant significand to the left in order
to make it equal to or larger than β−(p−1) and decrease the resultant exponent accordingly.

β−(p−1) ≤ m1 ×m2 < 1: If the digits in positions below β−(p−1) are non-zero and will be
rounded then the result is inexact. To improve the accuracy, we may shift the significand
to the left and decrease the resultant exponent accordingly.

?=⇒ Exercise 2.19 How many digits should be shifted and why?

1 ≤ m1 ×m2 < β: No normalization shift is required.

β ≤ m1 ×m2 < β2: We must shift the result by one position to the right and increase the
resultant exponent by one.

Overflow: If any of the above cases (after incrementing the exponent if any) generates an
exponent spill, then the postnormalization generates either max or a representation of ∞
depending on the rounding (explained below).

Underflow: If any of the above cases (after decrementing the exponent if any) generates an
underflow, then the postnormalization generates either min or zero depending on the
rounding (explained below).

Either operand is zero: The operation should produce a canonical zero.
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2.5.3 Division

To perform floating point division, the significands are divided (m1/m2) and the exponent of
the divisor is subtracted from the exponent of the dividend. For non-zero numbers, β−(p−1) ≤
m1 < β and β−(p−1) ≤ m2 < β according to our assumptions, so the initial result is contained
by β−p < m1

m2
< βp when m2 6= 0.

?=⇒ Exercise 2.20 Given normalized inputs only, what is the range of the resul-
tant exponent in the case of division? Can it overflow or underflow?

The sign bit of the result is equal to the XOR of the two operand signs while the resultant
significand belongs to one of the following cases:

m1 = 0,m2 6= 0: The postnormalization produces a canonical zero.

m1 6= 0,m2 = 0: The result overflows and the postnormalization produces either max or ∞
depending on the format and standard used.

m1 = m2 = 0: The result is mathematically undefined but usually the implemented standard
specifies what to produce. In the case of ieee, this produces a NaN (Not a Number).

β−p < m1/m2 < β−(p−1): We should shift the resultant significand to the left in order to
make it equal to or larger than β−(p−1) and decrease the resultant exponent accordingly.

β−(p−1) ≤ m1/m2 < 1: If the digits in positions below β−(p−1) are non-zero and will be
rounded then the result is inexact. To improve the accuracy, we may shift the significand
to the left and decrease the resultant exponent accordingly.

1 ≤ m1/m2 < β: No postnormalization is required.

β ≤ m1/m2 < βp: We must shift the significand to the right and increase the exponent ac-
cordingly.

Overflow: If the exponent (after incrementing if any) indicates an overflow, we produce max,
∞, or deal with the situation according to the specification of the implemented standard.

Underflow: If the exponent (after decrementing if any) indicates an underflow, we produce
min, 0, or deal with the situation according to the specification of the implemented stan-
dard.

?=⇒ Exercise 2.21 When subtracting the two exponents, is there any adjustment
needed for the bias?

2.5.4 Fused Multiply Add

The fused multiply add is an operation that takes three operands. Its most generic form produces
the result ±A×B±C for the operands, A, B, and C with a single rounding operation after the
addition. Hence, it gives a more accurate result than what we get from a multiplication then
rounding followed by addition then another rounding.
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← 2p digits → Multiplication result

p digits Maximum shift left of third operand

p digits Maximum shift right of third operand
← 4p digits →

Figure 2.4: Alignment shift of the third operand with respect to the multiplication result within
the FMA.

The FMA was first introduced in the early 1990s after the publication of the ieee standard 754-
1985. Its use was attractive since it produces a more accurate result and it was also faster
than two successive operations (the reasons why it is faster will become clear when its detailed
implementation is explained). It is the basic operation performed in many program loops to get
the sum of a bill of purchases for example or to get the result of a filtering operation in digital
signal processing. Furthermore, in the calculation of scalar products, matrix multiplications, or
polynomial evaluation we often iterate on a an instruction such as (sum = sum+ aibi). We can
also get the “lower” part of a multiplication using the FMA: H = ab+0.0 gives a rounded result
that contains the most significant part of the product. If it is important to know the rounded
part (to estimate the error in a calculation for example), we get it easily by L = ab−H.

Making this instruction a single operation that is both faster and more accurate is beneficial.
However, since the FMA was not standard compliant, a slower and more inferior result was
sometimes the “correct result” to produce. During the revisions of the ieee standard, it became
clear that such a useful operation should be part of the basic operations and it was included in
ieee std754-2008.

Since it involves a multiplication and an addition, it combines the steps of both operations. The
absolute values of the first two operands m1 × βe1 and m2 × βe2 are multiplied. Their resulting
exponent (e1 +e2) is compared to the exponent of the third operand (m3×βe3) to determine the
amount of shifting needed to align the addition operation. Since each operand has p digits, the
multiplication results in 2p digits as a maximum. A wide datapath may exist in the hardware
to allow the alignment of the third operand with the 2p digit result of the multiplication by
shifting that operand either left or right. The maximum shift occurs when none of the third
operand’s digits overlap with the multiplication result digits. Fig. 2.4 shows such a scheme.

The result of FMA may lead to an underflow or an overflow. So, both conditions must be
checked. The simple scheme of a 4p digits wide datapath is not exactly how all real FMAs are
implemented. We will see more about those in later chapters.

2.6 Reading the fine print in the standard

In this section, we try to present the fine details related to rounding and exceptional cases
handling in the ieee standard for floating point numbers. We follow that by a short analysis of
the standard’s strong and weak points.
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2.6.1 Rounding

The standard defines five rounding directions:

1. RNE = Unbiased rounding to nearest (in case of a tie round to even).

2. RZ = Round toward zero (sometimes called chop or truncate due to the way it is imple-
mented in sign and magnitude representation).

3. RM = Round toward minus infinity.

4. RP = Round toward plus infinity.

5. RNA = Biased rounding to nearest (in case of a tie round away from zero).

Any compliant implementation must provide RNE, RZ, RP, and RM. An implementation that
supports the decimal formats must also provide RNA. The default rounding for the binary
formats is RNE. For decimal formats, the ieee standard leaves the definition of the default
rounding to the programing language standards but recommends RNE.

The conventional (to humans at least!) round to nearest away from zero is easy to implement
in sign-magnitude encodings by adding 1/2 of the digit to be discarded and then truncating to
the desired precision.

Example 2.20 For round to integer, we have:

39.2 39.7
0.5 0.5

39.7→ 39 40.2→ 40

But suppose the number to be rounded is exactly halfway between two numbers: which
one is the nearest? To answer the question, let us add the same 0.5 to the two following
numbers:

38.5 39.5
0.5 0.5

39.0→ 39 40.0→ 40

Notice that we rounded up in both cases, even though each number was exactly halfway
between the smaller and larger numbers.

Therefore, by simply adding 0.5 and truncating, the biased RNA rounding is generated. In order
to have an unbiased rounding, we round to even whenever there is a tie between two numbers.
Now, using the previous numbers we get:

38.5 → 38
39.5 → 40

In the first case the number is rounded down, and in the second case the number is rounded up.
Therefore, we have statistically unbiased rounding. Of course, it is possible to obtain another
unbiased rounding by rounding to odd (instead of even) in the tie case. For such a case, the
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rounding is:

38.5 → 39
39.5 → 39

However, rounding to even is preferred because it may result in “nice” integer numbers, as in
the following example.

Example 2.21 Round 1.95 and 2.05 to the first fractional position using both the
round to nearest even and a round to nearest odd modes.
Solution: In the case of round to nearest even we get “nice” numbers:

1.95 → 2.0
2.05 → 2.0

whereas rounding to odd results in the more frequent occurrence of noninteger numbers:

1.95 → 1.9
2.05 → 2.1

To implement the RNE we must determine if the discarded part is exactly a tie or not. If it is
not a tie case we must determine to which number it is closer, i.e., if the discarded part is larger
than half the LSB of the remaining part or not. But, how does the hardware know if it is a tie
case from the first place? Let us once more analyze what we as humans do.

The conventional system for rounding adds 1/2 of the LSD position of the desired precision to
the MSD of the portion to be discarded. For RNE, this scheme has a problem: (the XXXX
are any additional digits)

38.5XXXX←Number to be rounded
0.5 0 0 0 0 ←Add 0.5

39.0XXXX←Result
39 ←Truncate

Two cases have to be distinguished:

Case 1: XXXX 6= 0 (at least one X = 1). The rounding is correct since 39 is nearest to
38.5 + δ, where 0 < δ < 0.5.

Case 2: XXXX = 0 (all X bits are 0). Now the rounding is incorrect. It is a tie case that
requires the result to be rounded to even (38).

It is obvious that, regardless of the number of X bits, all possible permutations are mapped
into one of the two preceding cases. Therefore, one bit is enough to distinguish between the
two possibilities. If any of the X bits is one this distinguishing bit becomes one. Otherwise it is
zero. This bit is often called the “sticky bit” since any one in the X part “sticks” into this bit.
The logic implementation of the sticky bit is simply the OR function of all the bits we want to
check.
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The MSB of the discarded part is called the “round bit” since we use it to determine the
rounding. If the round bit is zero we are sure that the discarded part is less than half the LSB
of the remaining part. If the round bit is one, we must check the sticky bit as well. If in this
latter case the sticky bit is zero it is a tie otherwise the discarded part is more than half the
LSB of the remaining part.

It is important now to remember our earlier discussion regarding the normalization shift in
addition and subtraction. We discovered then that a right shift by one digit is possible in
addition while a left shift by one digit is possible in subtraction. The left shift is of concern
since it means that we must keep a “guard digit”. In the case of binary this is just a guard bit.
In fact, the format is:

1. L G R S
← desired precision →

where

L = LSB at the desired precision,

G = guard bit,

R = round bit, and

S = sticky bit.

In the case of a left shift (normalization after subtraction), S does not participate in the left
shift, but instead zeros are shifted into R. In the case of a right shift due to a significand overflow
(during magnitude addition or no shift), the S and R guard bits are ORed into S (i.e., L→ G
and G+R+ S → S).

To summarize, while performing the operation, we keep two guard bits (G and R) and group
any other bits shifted out into the sticky bit S. After the normalization but just before the
rounding, the result has only one guard bit and the sticky bit. At this stage, if we want to use
a RNA we just add half ‘1’ to G and truncate as we did earlier. For a RNE, a more elaborate
action is required:

1. L G S
← desired precision → a

where

L = LSB at the desired precision,

G = guard bit,

S = sticky bit, and

a = bit to be added to G for proper rounding.
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The proper action to obtain unbiased rounding-to-even (RNE) is determined from the following
table:

L G S Action a
X 0 0 Exact result. No rounding is necessary. 0
X 0 1 Inexact result, but significand is rounded properly. 0
0 1 0 The tie case with even significand. No rounding needed. 0
1 1 0 The tie case with odd significand. Round to nearest even. 1
X 1 1 Round to nearest by adding 1. 1

Example 2.22 Here are some numbers with 4-bit significands rounded to nearest
even.

G S → Action
a) 1.000X 0 0 → machine number
b) 1.000X 0 1 → closer to .000X
c) 1.0000 1 0 → tie with LSB even
d) 1.0001 1 0 → tie with LSB odd; becomes 1.0010
e) 1.000X 1 1 → round up

?=⇒ Exercise 2.22 In some implementations, the designers choose to add the
action bit to L instead of G. Check if it makes a difference for the case of
RNE discussed so far.

So far, we have addressed only the unbiased rounding; but there are three more optional modes.
The round to zero, RZ, is simply a truncation in the conventional binary system that is used
in certain integer related operations Actually, most computers provide truncation as it does not
cost them much. The remaining two rounding modes are rounding toward +∞ and rounding
toward −∞. These two directed roundings are used in interval arithmetic where one computes
the upper and lower bounds of an interval by executing the same sequence of instructions twice,
once to find the maximum value of the result and the second to find its minimum value.

?=⇒ Exercise 2.23 Let us consider the computation s = (a× b)− (c×d) where a, b,
c, s are floating point numbers that must be rounded. Find the guaranteed
significance interval [smin, smax] in terms of a, b, c, and d, and the rounding
operations 5, 4, RZ, RA, RNA, and RNE.

The sticky bit, introduced previously, is also essential for the correct directed rounding.

Example 2.23 Let us see the importance of the sticky bit to Directed Upward
Rounding when we round to the integer in the following two cases.
Case 1: No sticky bit is used;

38.00001→ 38
38.00000→ 38

Case 2: Sticky bit is used:
38.00001→ 39 (sticky bit = 1)
38.00000→ 38 (sticky bit = 0, exact number).

When the sticky bit is one and we neglect using it, the result is incorrect.
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?=⇒ Exercise 2.24 A fractional value fi at bit location i of a signed digit binary
number · · ·xi+1xixi−1 · · ·x0 where each xi ∈ {−1, 0, 1} can be defined as fi =
(Σj=i−1

j=0 2j × xj)/2i .
The decision of the digit added for rounding is then determined by the
fractional value at the rounding position. However, the value to add in
order to achieve the correct rounding does not depend only on the fractional
range but also on the ieee rounding mode. In RP and RM modes, the sign
of the floating point number affects the decision as well.
Assume that L is the bit at the rounding location, i.e. it is the least
significant bit of the number and it is the location where the rounding
digit will be added. The fractional value f is calculated at L. Please fill
in the following table with the value of the digit to add to achieve correct
rounding.

range of f RNE RZ RP RM
+ve −ve +ve −ve

−1 < f < −0.5
−0.5

−0.5 < f < 0
0

0 < f < 0.5
0.5

0.5 < f < 1

2.6.2 Exceptions and What to Do in Each Case

The ieee standard specifies five exceptional conditions that may arise during an arithmetic
operation:

1. invalid operation,

2. division by zero,

3. overflow,

4. underflow, and

5. inexact result.

The only exceptions that possibly coincide are inexact with overflow or inexact with underflow.
When any of the exceptions occurs, the default behavior is to raise a status flag that remains
raised as long as the user did not explicitly lower it. Complying systems have the option to also
provide a trapping feature. Hence, exceptions are handled in one of two ways:

1. TRAP and possibly supply the necessary information to correct the fault. For example:

What instruction caused the TRAP?
What were the values of the input operands?
Etc.
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The standard also specifies the result that must be delivered to the trap handler in the
case of overflow, underflow, and inexact exceptions.

2. DISABLED TRAP and deliver a specified result. For example on divide by zero: “Set
the result to a correctly signed ∞”.

Invalid operations and NaNs

The invalid operation exception occurs during a variety of arithmetic operations that do not
produce valid numerical results. However before exaplaining what are the invalid operations, it
is important to clarify that the standard has two types of NaNs:

Signaling NaNs in some implementations represent values for uninitialized variables or miss-
ing data samples. They are a way to force a trap when needed since any operation on
them signals the invalid exception (hence their name of signaling).

Quiet NaNs are supposed to provide retrospective information on the reason of the invalid
operation which generated them. One way of achieving this goal is to use the significand
part as a pointer into an array where the original operands and the instruction are saved.
Another way is to make the significand equal to the address of the offending line in the
program code. Most implementations complying to the standard did not do much if
anything at all with this feature.

For binary formats, it is up to the implementation to decide on how to distinguish between the
two types.

Example 2.24 Most implementations chose to make the distinction based on the MSB
of the significand field. The Alpha AXP, SPARC, PowerPC, Intel i860, and MC68881
architectures chose to define a quiet NaN by an initial significand field bit of 1 and a
signaling NaN by an initial significand field bit of 0.
The HP PA-RISC and the MIPS RISC architectures chose the opposite definition.
They have 1 for signaling and 0 for quiet NaNs.

?=⇒ Exercise 2.25 In a certain implementation, the system boots with the mem-
ory set to all ones. Which of the two previous definitions for signaling and
quiet NaNs is more approriate?

The lesson learned from the differing implementations of sNaN and qNaN for binary formats lead
the committee revising the ieee standard to decide exactly how NaNs are encoded for decimal
formats. If the five most significant bits of the combination field are ones then the value of the
decimal format is a NaN. If the sixth most significant bit is also 1 then it is sNaN, otherwise it
is qNaN.

The invalid operations that lead to an exception are:

1. any operation on a signaling NaN,

2. an effective subtraction of two infinities,
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3. a multiplication of a zero by an infinity,

4. a division of a zero by a zero or an infinity by an infinity,

5. a remainder operation (x REM y) when y is zero or x is infinite,

6. a square root if the operand is less than zero, (Note that
√
−0 produces its operand as a

result and does not cause an exception. It is the only case where the result of a square
root is negative.)

7. a conversion of binary floating point number to an integer or decimal format when an
overflow, infinity, or NaN is not faithfully represented in the destination format and there
is no other way to signal this event, and

8. a comparison involving the less than or greater than operators on unordered operands. It
should be noted here that a NaN is not considered in order with any number. The standard
defines a special operator denoted by a question mark ‘?’ to facilitate the comparisons
with NaNs.

Example 2.25 Here are some examples on the above invalid operations.

(−∞) + (+∞)
(+0)× (−∞)

(−0)
(+0)
+∞
+∞

+∞mod4√
−5

It is interesting to note that in the single precision format, there are 223 ' 8 million possible
representations in the NaN class. Many more are available in the double precision format.
However, such a huge number of representations is not put to much use in most implementations.

The operations in the standard never generate a signaling NaN. An invalid operation generates
a quiet NaN if the result of the operation is a floating point format.

Since the quiet NaNs are valid inputs to most operations, it is important to specify exactly
what to do in such a case. The standard specifies that when one or more NaNs (none of them
signaling) are the inputs to an operation and the result of such an operation is a floating point
representation then a quiet NaN is generated. It is recommended that the result be one of the
input NaNs.

The issue of NaNs is where a lot of implementations really diverged causing problems for the
portability of the results across platforms. When two quiet NaNs appear as inputs, different
options were implemented by different designers:

1. Compare the significands or the “payloads” of the NaNs and deliver a result according to
some precedence mechanism.

2. Always take as a result the first operand of the NaNs.
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3. Always produce a “canonical” NaN regardless of the inputs, i.e. neglect the recommenda-
tion of the standard.

The first option is complicated and slow. Hence, it is usually rejected by hardware designers
optimizing for speed. It also assumes that the significands bear some meaning.

The second option is fast and easy to implement in the hardware datapath. However, it is not
commutative,

NaN1 +NaN2 = NaN1

NaN2 +NaN1 = NaN2

i.e. a change in the operand order in a “commutative” operation such as addition generates a
different result!

The third option is equally fast and keeps commutativity. However, the “canonic” quiet NaN on
one implementation is non-canonic on another implementation which causes portability prob-
lems.

Division by zero

In a division, if the divisor is zero and the dividend is a finite non-zero number a divide by zero
exception occurs. If the trap is disabled, the delivered result is a correctly signed infinity.

Overflow and infinities

The overflow flag is raised whenever the magnitude of what would be the result exceeds max
in the destination format. When traps are disabled the rounding mode and the sign of the
intermediate result determine the final result as follows:

RNE RZ RP RM
+ve +∞ +max +∞ +max
-ve −∞ -max -max −∞

The infinities are valid operands in many situations.

Example 2.26 Here are a few valid operations involving infinities.

+∞+ finite number = +∞.
−∞+ finite number = −∞.

√
+∞ = +∞.

positive finite number
−∞

= −0.

The standard thus states that unless there is an invalid exception due to some invalid operation
where an infinity is an input operand, the arithmetic on infinities is always exact and signals no
exceptions.
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On the other hand, an operation that generates an infinity as a result will only produce an
exception if it is a division by zero exception or the infinity is produced from finite results in
the case of an overflow.

If the overflow trap is enabled when an overflow occurs, a value is delivered to the trap handler
that allows the handler to determine the correct result. This value is identical to the normal
floating point representation of the result, except that the biased exponent is adjusted by sub-
tracting 192 for single precision and 1536 for double precision. This bias adjust has the effect
of wrapping the exponent back into the middle of the allowable range. The intent is to enable
the use of these adjusted results, if desired, in subsequent scaled operations within the handler
with a smaller risk of causing further exceptions.

Example 2.27 Suppose we multiply two large numbers to produce a single precision
result:

2127 × 2127 = 2254 ← overflow.

The value delivered to the trap handler would have a biased exponent:

254 + 127− 192 = 189.

Underflow and subnormal numbers

Similar to the case of overflow, if the underflow trap is enabled the system wraps the exponent
around into the desired range with a bias adjust identical to the overflow case, except that the
bias adjust is added instead of subtracted from the bias exponent.

If the underflow trap is disabled the number is denormalized by right shifting the significand
and correspondingly incrementing the exponent until it reaches the minimum allowed exponent
(exp = −126). At this point, the hidden ‘1’ is made explicit and the biased exponent is zero.
The following example (27) illustrates the denormalizing process.

Example 2.28 Assume, for simplicity, that we have a single precision exponent and
a significand of 6 bits.

Actual result =2−130 × 1.01101· | · · · −130 < −126⇒ denormalize
represented as =2−126 × 0.000101 |101 · · · we round (to nearest)

and rounded =2−126 × 0.000110 | = the result to be delivered.

The denormalization as a result of underflow is called gradual undeflow or graceful undeflow. Of
course, this approach merely postpones the fatal underflow which occurs when all the nonzero
bits have been right shifted out of the significand. Note that since denormalized numbers and ±
zero have the same biased exponent of zero, such a fatal underflow would automatically produce
the properly signed zero. The use of a signed zero indicator is an interesting example of taking
a potential disadvantage—two representations for the same value—and turning it (carefully!)
into an advantage.

When a denormalized number is an input operand, it is treated the same as a normalized number
if the operation is an addition or subtraction. If it is possible to express the result as a normalized
number, then the loss of significance in the denormalized operand did not affect the precision of
the operation and computation proceeds normally. Otherwise, the result is also denormalized.
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If an operation uses a denormalized input operand and produces a normalized result, usually a
loss of accuracy occurs. As an example, suppose we multiply 0.0010 . . . ∗ 2−126 by 1.000 . . . ∗ 29.
The result, 1.000 . . . ∗ 2−120, is a normalized number, but it has three fewer bits of precision
than implied.

Example 2.29 Operations on denormalized operands may produce normalized results
with or without exceptions noted to the programmer. Some examples are:

2−126 × 0.1000000 denormalized number
+ 2−126 × 0.1000000 denormalized number

2−126 × 1.0000000 normalized number, no exception

2−126 × 0.1110000 denormalized number
× 21 × 1.1110000 normalized number

2−125 × 1.1010010 normalized number, no exception

Two events contribute to underflow:

1. the creation of the a tiny non-zero number less than min

2. and an extraordinary loss of accuracy during the approximation of such a tiny nymber by
a subnormal number.

When the underflow trap is disabled and both of these conditions occur the underflow exception
is signaled. The original standard of 1985 gives the implementers the option to detect tininess
in two ways and the loss of accuracy in two ways as well. This obviously lead to different
implementations and problems for portability.

Inexact result

Exact result is obtained whenever both the guard bit and the sticky bit are each equal to zero.
Any other combinations of the guard and sticky bit implies that a round off error has taken
place, in which case the inexact result flag is raised. Said differently, if the rounded result of
an operation is not exact or if it overflows (with the overflow trap disabled) this exception is
signaled.

One use of this flag is to allow integer calculations with a fast floating point execution unit. The
multiplication or addition of integers is performed with the most significant bits of the floating
point result assumed to be an integer. In such an implementation, the inexact result flag causes
an interrupt whenever the actual result extends outside the allocated floating point precision.

Now, let us see if you were able to follow all of this discussion regarding the exceptions of the
ieee 754 standard.

?=⇒ Exercise 2.26 According to the definitions of the different exceptions, what
is the result of (+∞)/(−0) and of

√
−0 when traps are disabled and what

are the exceptions raised?
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2.6.3 Analysis of the IEEE 754 standard

There seems to be general agreement that the following features of the standard are best for the
given number of bits.

• The format of: S E F

• The two levels of precision (SINGLE and DOUBLE).

• The various rounding modes.

• The specification of arithmetic operations.

• The identification of conditions causing exceptions.

However, on a more detailed level, there seem to be many controversial issues, which we outline
next.

Gradual underflow

This is an area where a large controversy exists. The obvious advantage of the gradual underflow
is the extension of the range for small numbers, and similarly, the compression of the gap
between the smallest representable number and zero. For example, in SINGLE precision the gap
is 2−126 ' 1.2×10−38 for normalized numbers, whereas the use of denormalized numbers narrows
the gap to 2−149 ' 1.4 × 10−45. However, the argument is that gradual underflow is needed
not so much to extend the exponent range as to allow further computation with some sacrifice
of precision in order to defer as long as possible the need to decide whether the underflow will
have significant consequences.

In the early literature regarding the issue, several objections to gradual underflow exist:

1. Payne (45) maintains that the range is extended only from 10−38 to 10−45 (coupled with
complete loss of precision at 10−45) and it makes sense only if single precision frequently
generates intermediate results in the range 10−38 to 10−45. However, for such cases, she
believes that the use of single precision (for intermediate results) is generally inappropriate.
In fact, since the publication of the standard most implementations on general purpose
processors used the double precision or even a wider extended precision for intermediate
results.

2. Fraley (46) objects to the use of gradual underflow for three reasons:

(a) There are nonuniformities in the treatment of gradual underflow;

(b) There is no sufficient documented need for it;

(c) There is no mechanism for the confinement of these values.

3. Another objection to the gradual underflow is the increased implementation cost in floating
point hardware. It is much more economical and faster to simply generate a zero output
on underflow, and not have to recognize a denormalized number as a valid input.
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An alternative approach to denormalized numbers is the use of a pointer to a heap on occurrence
of underflow (45). In this scheme, a temporary extension of range can be implemented on occur-
rence of either underflow or overflow without sacrifice of precision. Furthermore, multiplication
(and division) work as well as addition and subtraction. While this scheme seems adequate, or
even better than gradual underflow, it also has the same cost disadvantage outlined in number
(3) above.

On the other hand, the presence of the subnormal numbers and the gradual underflow preserve
an important mathematical property: if M is the set of representable numbers according to the
standard then

∀x, y ∈M, x− y = 0⇐⇒ x = y.

In a system that flushes any underflow to zero and does not use denormalized representations,
if the difference between two numbers is lower than min the returned result is zero.

Example 2.30 Assume that a system uses the single precision format of ieee but
without denormalized numbers. In such a system, what is the result of 1.0× 2−120 −
1.1111 · · · 1× 2−121?
Solution: The exact result is obviously

1.000 · · · 0 ×2−120

− 0.111 · · · 1|1 ×2−120

0.000 · · · 0|1 ×2−120 = 2−144

which is not representable in this system. Hence the returned result is zero although
the two numbers are not equal.

The systems that flush to zero potentialy have multiple additive inverses to any number.

The use of number representations with less than the normal accuracy in the denormalized
range prevents such an effect. It allows all sufficiently small add and subtract operations to be
performed exactly.

?=⇒ Exercise 2.27 We saw that the subtraction of normalized numbers may
produce denormalized numbers. The same effect does not exist within
the subnormal range. That is to say, the difference of two denormalized
numbers is always a valid denormalized number (or zero if the two numbers
are equal). Explain why.

Significand range and exponent bias.

For binary formats, the standard has a significand in the range [1, 2(, and the exponent is biased
by 127 (in the single precision). These yield a number system with a magnitude between 2−126

and ≈ 2128, thus, the system is asymmetric in such a way that overflow is presumably less
likely to happen than underflow. However, if gradual underflow is not used, then the above
rationale disappears and one can go back to a pdp-11 format with significand of in [0.5, 1( and
an exponent biased by 128. The pdp-11 single precision numbers have a magnitude between
2−128 and ≈ 2128, such that overflows and underflows are symmetric.
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Zeros and infinities.

The ieee standard has two zero values (+0 and −0) and two infinities (+∞ and −∞), and has
been called the two zero system. An alternate approach, the three zero system, is suggested by
Fraley (46). His system has values +0, −0, and 0, +∞, −∞, and ∞.

The basic properties of the two systems are shown below:

2-Zero 3-Zero Difference
+0 = −0 −0 < 0 < +0
−∞ < +∞ −∞ < +∞

or or
−∞ = +∞ ∞ not comparable 3 zero system
x− x = +0 x− x = 0 introduces an

1/+ 0 = +∞ 1/+ 0 = +∞ unsigned zero
1/− 0 = −∞ 1/− 0 = −∞

1/0 =∞

The main advantage of the three zeros system is the availability of a true zero and a true infinity
in the algebraic sense. This is illustrated by the following points.

1. Suppose f(x) = e1/x. In the two zeros system we have:

f(−0) = +0,
f(+0) = +∞;

thus, f(−0) 6= f(+0), even though −0 = +0 as defined by the standard.

This, of course, is a contradiction of the basic theorem:

if x = y then f(x) = f(y).

By contrast, in the three zeros system, this theorem holds since −0 6= +0.

2. If gradual underflow is not implemented then a two zeros system fails to distinguish zeros
that result from underflow from those which are mathematically zero. The result of x− x
is +0 in the two zeros system. In the three zeros system, x − x = 0, whereas +0 is the
result of an underflow of a positive number; that is,

0 < +0 < smallest representable number.

3. In the ieee 754 standard, if the sum of two operands with different signs or the difference
of two operands with the same sign is exactly zero the delivered result is −0 in the case
of rounding toward −∞. In all the other rounding modes, the result is +0. This choice
stands against the definition of +0 = −0. A three zeros system delivers the true 0 in such
a case for all the rounding modes.
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2.7 Cray Floating Point

The ieee standard is an attempt to provide functionality and information to the floating point
user. All floating point designs are necessarily compromises between user functionality and
engineering requirements; between function and performance. A clear illustration of this is the
Cray Research Corporation floating point design (as used in the CRAY-1 and CRAY-XMP). The
Cray format is primarily organized about high speed considerations, providing an interesting
contrast to the ieee standard.

2.7.1 Data Format

As before, the format (β = 2) consists of sign bit, biased exponent and fraction (mantissa):

S E F
1 ← 15 →← 48 →

where

S = sign bit of fraction
E = biased exponent
F = fraction

then

e = true exponent = E-bias
f = true mantissa = 0.F

A normalized nonzero number X would be represented as

X = (−1)S × 2E−bias × (0.F)

with a bias = 214 = 16384.

2.7.2 Machine Maximum

max = 2213−1(1− 2−48) = 28191(1− 2−48).

Note that overflow is strictly defined by the exponent value. Any result with an exponent
containing two leading ones is said to have overflowed.

2.7.3 Machine Minimum

min = 2−(213) · 2−1 = 2−8193.
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Any result with an exponent containing two leading zeros is said to have underflowed. There
are no underflow interrupt flags on the Cray machines; underflowed results are to be set to
zero. Notice the relatively large range of representations that are designated “underflowed” or
“overflowed.”

To further simplify (and speed up) implementations, the range tests (tests for nonzero numbers
which exceed max or are under min) are largely performed before postnormalization! (There
is an exception.) To expedite matters still further, range testing is not done on input operands
(except zero testing)!

This gives rise to a number of curious results:

1. A number below min, call it s, can participate in computations. Thus,

• (min + s)−min = s, where s is 2−2 to 2−48 times min, since min + s > min before
postnormalization.
The machine normalizes such results producing a number up to 2−48 smaller than
min. This number is not set to zero.

• min + s is produced as the sum of min and s.

• s+ 0 = 0, since now the invalid exponent of s is detected in the floating point adder
result.

• s× 1.0 = 0 if s is less than 2−1 ×min, since the sum of exponents is less than min
(recall 1.0 is represented by exponent = 1, fraction = 1/2).

• s× 1.0 = s if min > s > 2−1 ×min, since the sum of the exponents before postnor-
malization is equal to min.

• s× Y = 0 if the exponent of Y is not positive enough to bring exp(s) + exp(Y ) into
range.

• s× Y = s× Y if exp(s) + exp(Y ) ≥ exp(min).

2. On overflow, the machine may be interrupted (maskable). An uninterrupted overflow is
represented by exp(max) + 1 or 11000..0 (bias +213) in the exponent field (actually,
11xx...x indicates an overflow condition). The fraction may be anything.

3. Overflow checking is performed on multiply. If the upper bits of the exponent are “1”,
the result is set to “overflow” (exponent = 1100...0) unless the other argument is zero
(exponent = 000..0, fraction = xx...x), in which case the result is zero (all zeros exponent
and fraction).

4. Still, it is possible to have the following:

max× 1.0 = max with overflow flag set .

This is because 1.0 has exp = 1, which causes the result exponent to overflow before
postnormalization.

5. The input multiplier operands are not checked for underflow, as just illustrated.
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2.7.4 Treatment of Zero

Cray represents zero as all 0’s (i.e., positive sign) and sets a detected underflowed number to
zero. The machine checks input operands for zero by exponent inspection only. Further, the
Cray machine uses the floating point multiplier to do integer operations. Integers are detected
by having all zeros in the “exponent” field for both operands. If only one operand of the
multiplier has a zero exponent, that operand is interpreted as floating point zero and the result
of multiplication is zero regardless of the value of the other operand. Thus,

(zero)× (+overflow) = zero,

since zero takes precedence. Zero is (almost) always designated as +00...0. Thus, even in this
case:

(+zero)× (−overflow) = +zero.

However, in the case of
(+zero)× (−zero) = −zero,

since both exponents are zero, the operands are interpreted as valid integer operands and the
sign is computed as such. However,

(−zero)× (Y ) = (+zero)

for any nonzero value of Y , since +zero is “always” the result of multiplication with a zero
exponent operand.

2.7.5 Operations

The Cray systems have three floating point functional units:

• Floating Point Add/Subtract.

• Floating Point Multiplication.

• Floating Point Reciprocal.

On floating point add/subtract, the fraction result is checked for all zeros. In this case, the sign
is set and the exponent is set to all zeros. No such checking is performed in multiplication.

2.7.6 Overflow

As mentioned earlier, overflow is detected on the results of add and multiply, and on the input
operands of multiply. In overflow detection, the result exponent is set to exp(max)+1—two
leading exponent “1”s followed by “0”s. The fraction for all operations is unaffected by results
in an overflow condition.

The exceptions to the test for over/underflow on result (only) before postnormalization are two:
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Table 2.6: Underflow/overflow designations in Cray machines.
test on test on output test on output
input before post- after post-

normalization normalization
underflow +/− No Yes No

× No Yes No
overflow +/− No Yes Yes

× Yes Yes No

• The input argument to multiply are tested for overflow.

• The result of addition is tested for overflow (also) after postnormalization. This is (in
part) a natural consequence of the operation

max + max = overflow

and the overflow flag is set. Also,

(−max) + (−max) = −overflow.

The sign of the overflow designation is correctly set.

Thus, the “overflow” designation is somewhat “firmer” than “underflow.” Table 2.6 illustrates
the difference.

Since fractions are not checked on multiply, some anomalies may result, such as:

overflow × 0.0× 21 = overflow with 0.0 fraction.

This quest for speed at the cost of correct functionality sometimes is justified in some specific
applications. When it comes to three dimensional graphics animation, an error in a few pixels
in a frame that flashes on the screen and is followed by so many other frames within a second is
definitely tolerable. In general signal processing whether the signal is audio, video, or something
else is a domain that tolerates a number of errors and the designer should not restrict the design
with the requirements of a standard such as the ieee 754.

The danger comes, however, when such a design philosophy is applied beyond the original ap-
plication of the design. If fast and inaccurate results are delivered in scientific or financial
computations catastrophes might occur. Due diligence is required to handle the numbers cor-
rectly and to report any exceptions that occur. The software getting such exceptions must also
deal with them wisely. Otherwise, an accident similar to the blast of the Ariane V space shuttle1

in 1996 might repeat.

1The cause in that accident was an overflow of a conversion from a floating point to integer operation. The
ADA language used in that system had a policy of aborting on any “arithmetic error”. In this case the overflow
was not a serious error but the system aborted and equipements worth millions of dollars were blown in the air!



80 CHAPTER 2. FLOATING OVER THE VAST SEAS

2.8 Additional Readings

Sterbenz (16) is an excellent introduction to the problem of floating point computation. It is
a comprehensive treatment of the earlier approaches to floating point representation and their
difficulties.

The January 1980 and March 1981 issues of ieee Computer have several valuable articles on the
proposed standard; Stevenson (47) provides a precise description of what was proposed in 1981
for the ieee 754 standard with good introductory remarks.

Cody (48) provides a detailed analysis of the three major proposals in 1981 and shows the
similarity between all of them.

Coonen (49) gives an excellent tutorial on underflows and denormalized numbers. He attempts
to clear the misconceptions about gradual underflows and shows how it fits naturally into the
proposed standard.

Hough (50) describes applications of the standard for computing elementary functions such
as trigonometric and exponential functions. This interesting article also explains the need for
some of the unique features of the standard: extended formats, unbiased rounding, and infinite
operands.

Coonen (51) also published a guide for the implementation of the standard. His guide provides
practical algorithms for floating point arithmetic operations and suggests the hardware/software
mix for handling exceptions. His guide also includes a narrative description of the standard,
including the quad format.

Kahan provides (52) more details on the status of the standard, features, and examples. A
recent interview with him (53)) describes the history of the standard.

2.9 Summary

Pairs of signed integers can be used to represent approximations to real numbers called float-
ing point numbers. Floating point representations broadly involve tradeoffs between precision,
range, and implementation problems. With the relatively decreasing importance of implemen-
tation costs, the possibility of defining more suitable floating point representations has led to
efforts toward a standard floating point representation.

We discussed the details of the ieee 754 standard and contrasted it to other prior de facto
standards. If in a specific design, the features of the standard are deemed too cumbersome a
designer can use the tools we presented in this chapter to evaluate the points of strengths and
weakness in any proposed alternatives. However, the designer should wisely define the operations
on the chosen format and clearly define the outcomes in the case of exceptions. Such a clear
definition enables future designers to decide whether such choices are suitable to their systems
or not.
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2.10 Problems

Problem 2.1 For a variety of reasons, a special purpose machine is built that uses 32-bit
representation for floating point numbers. A minimum of 24 bits of precision is required.

Compare a ibm S/370-like (radix=16 and with truncation only) system to the ieee binary32
system with respect to

1. the range,

2. the precision, and

3. the associative, commutative, and distributive properties of basic arithmetic operations.
(In which cases do the properties fail?)

Problem 2.2 For ieee single precision (binary32), if A = (1).0100 . . .×2−126, B = (1).000 . . .×
2−3, and C = (1).000 . . .× 25 (A, B, and C are positive):

1. What is the result of A ∗B ∗ C, RM round, if performed (A ∗B) ∗ C ?

2. Repeat, if performed A ∗ (B ∗ C).

3. Find A+B + C, RP round.

4. If D = (1).01000 . . .× 2122, find C ∗D, RP round.

5. Find (2 ∗ C) ∗D, RZ round.

Problem 2.3 All of the floating point representations studied use sign and magnitude to
represent the mantissa, and excess code for the exponent. Instead, consider a floating point
representation system that uses radix 2 complement coding for both the mantissa and the
exponent for a binary based system.

1. If the magnitude of a normalized mantissa is in the range 1/2 < m < 1, where is the
implied binary point?

2. Can this representation make use of a technique similar to the hidden one technique studied
in class? If so, which bit is hidden and what is its value? If not, why not?

Problem 2.4 In each of the following, you are given the ALU output of floating point operations
before post-normalization and rounding. An ieee-type format is assumed, but (for problem
simplicity) only four bits of fraction are used (i.e., a hidden “1”.xxx, plus three bits)—and three
fraction bits are stored.

M is the most significant bit, immediately to the left of the radix point.
X are intermediate bits.
L is the least significant bit.
S is the sign (1 = neg., 0 = pos.)

(1) Show results after post-normalization and rounding—exactly the way the fraction will be
stored. (2) Note the effects (the change) in exponent value.
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1. Result after subtraction, round RZ

S M .XX LGRS
1 0 0 0 0 1 0 0

Result after post-normalization and round:

S significand change to exponent

2. Result after multiplication, round RNE

S M .XX LGRS
0 1 0 1 0 1 0 1 0

Result after post-normalization and round:

S significand change to exponent

3. Result after multiplication, round RNE

S M .XX LGRS
0 1 1 1 1 1 1 0 0

Result after post-normalization and round:

S significand change to exponent

4. Result after addition, RM

S M .XX LGRS
1 1 0 1 1 0 0 0 1

Result after post-normalization and round:

S significand change to exponent

Problem 2.5 On page 66, there is an action table for RNE. Create a similar table for RP.
State all input bits used and all actions on the final round bit, A.

Problem 2.6 For a system that follows the IEEE 754-2008 standard and uses the decimal64
format (emax = 384, p = 16), what are the results and flags raised (inexact, overflow, underflow,
invalid, and divide by zero) corresponding to the following operations?

1. (+0× 10−216) + (−0× 10−306), rounded away from zero.

2. (−20000000000000× 10−14)× (−5× 10−398), rounded towards zero.
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3. (−80× 10362)× (−125× 1019), rounded to nearest ties to even.

4. (+20× 10−30)× (+5657950712797142× 10−368), rounded to nearest ties away from zero.

5. (−8672670147962662× 10159)/ sNaN, rounded to nearest ties to even.

6. (−8628127745585310× 10−214)/(+4403614193461964× 10207), rounded to minus infinity.

7. (+1712988626697436× 10−375)/(−2308774070921686× 1096), rounded to plus infinity.

8. (+9999999999969645 × 10369) − (−303540000023000 × 10359), rounded to nearest ties to
zero.

Problem 2.7 Assume that we have a ‘single precision decimal system’ with two digits. If we
add 0.54 × 102 and 0.42 × 104 the exact result is 0.4254 × 104 but suppose that the hardware
uses an internal three digits notation and rounds the result to 0.425× 104. When this internal
result is saved, the round to nearest mode yields 0.42 × 104. However, if the round to nearest
mode were applied to the original exact result we get 0.43× 104. This is an example of what is
known as “double rounding” errors.

1. In the regular binary floating point representation, does double rounding lead to a problem
in the round to zero mode? What about the round to nearest up (the ‘normal’ rounding
for humans)?

2. If we round the sum x+ y of two floating point numbers x and y each having t-bits in its
significand to a precision t′ such that t′ ≥ 2t + 2 prove that a second rounding to t bits
yields the same result as a direct rounding to t bits of the exact result regardless of the
rounding mode. (That is to say double rounding does not cause a problem if the first
rounding is to a wide enough precision.)

3. Show that the statement of question 2 holds also for multiplication. (Note: it is also true
for division and square root but you do not need to prove it for those two now!)

4. A designer claims that an ieee double precision floating point unit for addition, multipli-
cation, division, and square root can always produce correct results for the single precision
calculations as well. Discuss the correctness of this claim based on the results of this
problem.

Problem 2.8 In a system with an odd radix β, a number whose value is D =
∑
i diβ

i is
represented by dndn−1 · · · d1d0.d−1d−2 · · · where ∀i−β+1

2 ≤ di ≤ β−1
2 .

1. Is this a redundant system?

2. Prove that for any j ≤ n,
∣∣∣∑j−1

i=−∞ diβ
i
∣∣∣ ≤ 1

2β
j .

3. Is the round to zero equal to a truncation in such a system?

4. If the representation is finite (i.e. the minimum i is not −∞), prove that the round to
nearest is equal to a truncation.
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Problem 2.9 In a system with an even positive radix β, a number whose value is D =
∑
i diβ

i

is represented by dndn−1 · · · d1d0.d−1d−2 · · · where −β2 ≤ di ≤
β
2 for all values of i and if |di| = β

2
then the first non-zero digit that follows on the right has the opposite sign, that is, the largest
j < i such that dj 6= 0 satisfies di × dj < 0.

1. For a finite representation (i.e. the minimum i is not −∞ but a certain finite value `), do
all numbers have unique representations in this system? Clearly give your reasons.

2. Prove that for any j ≤ n,
∣∣∣∑j−1

i=` diβ
i
∣∣∣ ≤ 1

2β
j and that the only way of representing 1

2β
j

in this system starting from position j − 1 and going down to position ` is (β2 000 · · · 000).

3. Prove that the truncation of a number at a certain position is equivalent to a type of
round to nearest. Please indicate clearly what happens in the tie cases (when the number
is exactly at the mid point between the two nearest numbers).

4. Does this number system suffer from the double rounding problem in the type of round to
nearest mentioned above? What about round to zero, round to plus infinity, and round to
minus infinity?

Problem 2.10 Your friend claims that for finite floating point numbers (binary or decimal
formats), the two successive program instructions c = a+ b and d = c− b lead to d = a always
and uses this idea in a program. You should either prove this identity as a general statement
for all cases of the ieee standard or disprove it by an example if it fails under some conditions.

Problem 2.11 You are adding support for the square root operation to a system that uses the
ieee decimal64 format.

1. Consider the following statement: “The square root operation never raises the divide by
zero, overflow, or underflow flags; the only flags that may be raised due to this operation
are the invalid and inexact flags.” Indicate your reasons to say whether the statement is
true or false.

2. Prove: “For a decimal floating point number d with a significand represented in p digits,
if the result of

√
d is exact it can never be represented in exactly p + 1 digits. Hence, in

the round to nearest, we never get the tie case.”

3. Assume that you want to implement the following rounding directions: Round To Zero
(RTZ), Round Away from Zero (RAZ), Round to Plus Infinity (RPI), Round to Minus
Infinity (RMI), as well as three round to nearest with the tie cases resolved as: to even
(RNE), to zero (RNZ), and away from zero (RNA). Given that the statement of part 2 is
true, indicate which of those rounding directions are exactly equivalent and explain why.
Hint: remember that the result of the square root is always positive (except for −0 but
you may assume that it is handled separately).



Chapter 3

Are there any limits?

In the early days of automated calculators, the parts involved were mechanical. The physi-
cal limitations imposed on such systems are quite different from those of computers based on
transistors. However, the basic concepts of number representations presented earlier as well as
the algorithms for adding, multiplying, and dividing presented later are still applicable. As the
technology used changes, the designer must re-evaluate the choices made while using the older
technology and see if the trade-offs still carry to the new generation of devices.

In this chapter, we are concerned about the limits imposed by the physical implementation of
high performance arithmetic circuits. Usually a designer needs to know three basic parameters:
the time, the gate count, and the power a system takes to fulfil the arithmetic operation.
We present a few simple tools for the evaluation of those parameters. We emphasise simple
tools because the designer needs to have a general overview of the possible alternatives before
starting the detailed design. If the tools are not simple and fast yet maintaining a good degree
of accuracy the designer will not use them. As the design nears completion, more sophisticated
tools providing a higher accuracy ought to be used.

The time indicates how quickly the operation is executed and hence it has an effect on the overall
digital system. One of the basic operations that exist in all synchronous microprocessors for
example is the incrementation of the program counter. This incrementation occurs every clock
cycle and it is impossible for the whole system to run faster if this operation is slow.

The number of logic gates indicates how large the circuit is. This translates to a certain chip
area in VLSI designs which in turn translates into cost. Larger circuits are usually more costly
to implement. Depending on the regularity of the design, large circuits might also be more
complex. Complexity leads to a longer design time, lengthy testing procedures, and troubles in
maintaining or upgrading the design later.

The power consumption represents the running cost to operate the circuit. If a circuit uses a
part of the consumed power for the operation and dissipates the remaining part in the form of
heat to its environment then this heat must be removed. The cooling mechanism design and its
operation depends on the amount of heat and adds to the running cost of the overall system.
The power consumption of a system running on batteries obviously affects the batteries life time.

The three parameters are linked. A design might use a large number of gates in parallel, hence

85
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has a large area and consume considerable power, to achieve a faster operation. Another design
reuses the same piece of hardware to save on the number of gates but performs the computation
serially in a longer time. A third design spreads the operation in time by clocking the circuit
at a lower frequency but uses less power. Such a system might consume half of the power and
take double the time of another design thus maintaining the same total energy used for the
operation. From the perspective of the energy source (say the battery), the two designs appear
to be equivalent. This is not necessarily true in all systems. The two designs do consume the
same energy but one of them at a higher rate. If the energy source is not able to supply the
higher rate then the higher power design is not feasible. In yet another case, the design might
be able to compute faster and use a lower energy at the expense of a complicated scheme of
clocking the circuit.

We see from these simple examples that a designer must really have a sense of the specific
requirements of the overall system and how the arithmetic blocks fit in that system. Depending
on the requirements, the figure of merit for a design might be the time delay (T), the gate count
or area (A), the power (P), the energy (power multiplied by time), or in general a formula such
as

merit = T aAbP c

where the exponents a, b, and c are parameters defined according to the requirements.

Whether this or a more sophisticated formula is used, a designer must evaluate the time, the
size, and the power consumption of the proposed design to compare it to other alternatives.

3.1 The logic level and the technology level

In most arithmetic systems, the speed is limited by

1. the extent to which decisions of low order numeric significance affect results of higher
significance and

2. the nature of the building block that makes logic decisions.

The first problem is best illustrated by the addition operation where it is possible for a low order
carry to change the most significant bits of the sum.

Example 3.1 For the sum
0101101

+0010011
1000000

a carry generated at the LSB changes all the sum bits up to the MSB.

The essence of this problem is the issue of sequential processing. Do we have to do things in this
specific sequence or is there another way to enhance the speed by doing things in parallel for
example? This exchange is, in fact, trading-off the size of the circuit to gain speed. Alternatively,
a designer may choose a redundant representation and have a carry-free addition for as long as
there is no need to convert to regular binary. The conversion has the time delay of the carry
propagation.
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Another instance of the sequentiality problem is clear in the case of floating point addition and
subtraction where several steps are taken in sequence: equalization of the exponent, alignment
shift, addition, detection of the leading zeros, normalization, and rounding. As we progress in
the book, we will see that it is possible to reduce the number of sequential steps in floating point
operations and to improve the carry propagation speed in the integer addition. However, there
are bounds or limits to fast arithmetic enhancements. We explore the limits in this chapter and
use them later as benchmarks for comparison purposes.

The second problem regarding the nature of the building blocks is technology dependent. Each
logic device has an inherent switching speed that depends on the physics involved in the switching
mechanism. With vacuum tubes in the early electronic computers, the average switching speed
was quite different from the time when the integrated circuits technology used Emitter Coupled
Logic (ECL) transistors or later when Complementary Metal Oxide Semiconductor (CMOS)
transistors became the norm.

The technology limits the speed in other ways as well beyond the switching speed. Depending
on the output signal strength of a device, we decide the maximum number of logic gates, the
fanout , that can be driven directly by this signal. If we use an electric voltage to indicate the
logic level and the inputs to the gates are not drawing in much current, it is easier to allow a
larger fanout. On the other hand, if the signal indicating the logic level is an electric current or
charge value, it is not as easy to share it among the inputs to subsequent gates and a special
circuitry is sometimes necessary. In either case, some required logic functions might exceed the
fanout limit and the signal must be buffered, i.e. we use additional gates to strengthen the signal
and preserve the required speed. Such special arrangements for fanout represent one facet of
the trade-off between the speed and number of gates that is technology dependent. The case of
doing the floating point addition with more parallelism is a trade-off that is independent of the
technology.

Fundamentally, there is no minimum amount of energy required to process the information nor
to communicate it (54) if the process is conducted sufficiently slowly. However, most computers
attempt to process their information quickly and dissipate a considerable amount of energy.
Computers are bound by the maximum allowable amount of heat that the packages of the
circuits are able to dissipate.

By understanding the technology constraints, a designer is able to build efficient basic blocks.

We begin by examining ways of representing numbers, especially insofar as they can reduce
the sequential effect of carries on digits of higher significance. Carry independent arithmetic is
possible within some limits using redundant representations or using residue arithmetic. This
residue arithmetic representation is a way of approaching a famous bound on the speed at which
addition and multiplication are performed.

This bound, called Winograd’s bound, determines a minimum time for arithmetic operations
and is an important basis for determining the comparative value of the various implementation
algorithms discussed in subsequent chapters.

For certain operations, it is possible to use a memory storage, especially a Read Only Memory
(ROM), as a table to “look-up” a result or partial result. Since very dense ROM technology
is now available, the last section of this chapter develops a performance model of ROM access.
Unlike Winograd’s work, this is not a strict bound, but rather an approximation to the retrieval
time.
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3.2 The Residue Number System

3.2.1 Representation

The number systems considered so far in this book are linear, positional, and weighted, in which
all positions derive their weight from the same radix (base). In the binary number systems,
the weights of the positions are 20, 21, 22, etc. In the decimal number system, the weights are
100 = 1, 101 = 10, 102 = 100, 103 = 1000, etc.

The residue number system (55; 56) usually uses positional bases that are relatively prime to
each other, i.e. their greatest common divisor is one. For example, the two sets (2, 3, 5) and
(4, 5, 7, 9) satisfy this condition.

Any number is represented by its residues (least positive remainders) after dividing the number
by the base. For instance, if the number 8 is divided by the base 5, the residue is 3. Hence, to
convert a conventionally weighted number (X) to the residue system, we simply take the residue
of X with respect to each of the positional moduli.

Example 3.2 To convert the decimal number 29 to a residue number with the bases
5, 3, 2, we compute:

R5 = 29mod5 = 4
R3 = 29mod3 = 2
R2 = 29mod2 = 1

and say that the decimal number 29 is represented by [4, 2, 1].

Example 3.3 In a residue system with the bases 5, 3, 2 how many unique represen-
tations exist? Develop a table giving all those representations and the corresponding
number.
Solution: The number of unique representations is 2×3×5 = 30. The following table
lists the numbers 0 to 29 and their residues to bases 5, 3, and 2.

Residues Residues Residues
N 5 3 2 N 5 3 2 N 5 3 2

0 0 0 0 10 0 1 0 20 0 2 0
1 1 1 1 11 1 2 1 21 1 0 1
2 2 2 0 12 2 0 0 22 2 1 0
3 3 0 1 13 3 1 1 23 3 2 1
4 4 1 0 14 4 2 0 24 4 0 0
5 0 2 1 15 0 0 1 25 0 1 1
6 1 0 0 16 1 1 0 26 1 2 0
7 2 1 1 17 2 2 1 27 2 0 1
8 3 2 0 18 3 0 0 28 3 1 0
9 4 0 1 19 4 1 1 29 4 2 1

Because the bases 5, 3, 2 are relatively prime, the residues in this example uniquely identify a
number. The configuration [2, 1, 1] represents the decimal number 7 just as uniquely as binary
111.

The main advantage of the residue number system is the absence of carries between columns in
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addition and in multiplication. This advantage is due to the properties of modular arithmetic:
if N ′ = Nmodµ and M ′ = Mmodµ, then

(N +M)modµ = (N ′ +M ′)modµ
(N −M)modµ = (N ′ −M ′)modµ
(N ×M)modµ = (N ′ ×M ′)modµ

Arithmetic is closed (done completely) within each residue position. Since the speed is deter-
mined by the largest modulus position, it is possible to perform addition and multiplication on
long numbers that have many digits at the same speed as on short numbers.1 Recall that in the
conventional linear weighted number system, an operation on many digits is slower due to the
carry propagation.

3.2.2 Operations in the Residue Number System

Addition and multiplication are easily carried within each base with no carries between the
columns.

Example 3.4 In the 5, 3, 2 residue system, perform 9 + 16, 8 + 19, and 7× 4
Solution: We start by converting each number to its representation we then perform
the operation and check the result using the table of example 3.3.

9 → [4, 0, 1] 8 → [3, 2, 0]
+16 → [1, 1, 0] +19 → [4, 1, 1]

decimal residue decimal residue
5, 3, 2 5, 3, 2

Note that each column is added modulo its base, disregarding any interposition carries.
As for the multiplication:

7 → [2, 1, 1]
×4 → ×[4, 1, 0]
28 [3, 1, 0]

Again, each column is multiplied modulo its base, disregarding any interposition car-
ries; for example, (2× 4)mod5 = 8mod5 = 3.

The uniqueness of representation property is the result of the famous Chinese Remainder The-
orem.

Theorem 1 (Chinese Remainder) Given a set of relatively prime moduli (m1, m2, . . ., mi,
. . ., mn), then for any X < M , the set of residues {Xmodmi

|1 ≤ i ≤ n} is unique, where

M =
n∏
i=1

mi.

The proof is straightforward:
1The redundant representations that we introduced in the first chapter achieve the same goal using a different

way.
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Suppose there were two numbers Y and Z that have identical residue representations;
i.e., for each i, yi = zi, where

yi = Ymodmi

zi = Zmodmi
.

Then Y − Z is a multiple of mi, and Y − Z is a multiple of the least common
multiple of mi. But since the mi are relatively prime, their least common multiple is
M . Thus, Y −Z is a multiple of M , and Y and Z cannot both be less than M (57).

Subtraction

Since (amodm) − (bmodm) = (a − b)modm, the subtraction operation poses no problem in
residue arithmetic, but the representation of negative numbers requires the use of complement
coding.

Following our earlier discussion on complementation, we create a signed residue system by
dividing the range and using the numbers below M/2 to represent positive numbers while those
greater than or equal to M/2 represent negative numbers.

So, a negative number −M/2 ≤ −Y < 0 is represented by X = M − Y . Said differently, a
number X ≥M/2 is treated as −Y = X −M ,

(X −M)modM = XmodM,

and the complement of XmodM (Y ) is:

Xc = (M −X)modM.

?=⇒ Exercise 3.1 In residue representation X = [xi], where xi = Xmodmi
, call

the complement of X, Xc and that of xi, xci = (mi − xi)modmi
. Prove that

Xc = [xci ].

Example 3.5 In the 5,3,2 residue system, M = 30, integer representations 0 through
14 are positive, and 15 through 29 are negative (i.e., represent numbers −15 through
−1). Calculate (8)c and (9)c as well as 8− 9.
Solution: The representations of 8 and 9 are

8 = [3, 2, 0],
9 = [4, 0, 1]

So, (8)c = [2, 1, 0] i.e. 5− 3, 3− 2, and (2− 0)mod2 while (9)c = [1, 0, 1].

8 = 8 = [3, 2, 0]
−9 = (9)c = +[1, 0, 1]
−1 [4, 2, 1] = 29or − 1

?=⇒ Exercise 3.2 What is the range of signed integers that can be represented
in the 32, 31, 15 residue number system? Show how to perform (123− 283) in
this residue system.
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3.2.3 Selection of the Moduli

Usually, a designer of a residue system chooses the moduli so that

1. they are relatively prime to satisfy the conditions of the Chinese Remainder Theorem and
provide unique representations, and

2. they minimise the largest modulus in order to get the highest speed. (They minimise the
time needed for the carry propagation in the residues of the largest modulus.)

?=⇒ Exercise 3.3 Assume that a designer chooses as the bases 4, 3, 2, list all the
possible representations and the corresponding numbers. Are there some
impossible combination of residues? Why?

Beyond those main criteria, certain moduli are more attractive than others for two reasons:

1. They are efficient in their binary representation; that is, n binary bits represent approx-
imately 2n distinct residues. By way of contrast, the 5, 3, 2 bases require three bits to
represent the residue of base 5, two bits for the residue of base 3, and one bit for the
residue of base 2 giving a total of six bits. That residue system represents 30 different
numbers while a regular binary system with six bits represents 26 = 64 numbers.

2. They provide straightforward computational operations using binary adder logic. From an
implementation point of view, the easiest is to build adders that are modulo some power
of two. However, we are not allowed to have more than one base as a power of two in
order to have unique representations. Some odd moduli are easier than others, we should
choose the easy ones!

Merrill (58) suggested moduli of the form 2k1 , 2k1 − 1, 2k2 − 1, . . . 2kn − 1 (k1, k2, . . . , kn are
integers) as meeting the above criteria.

Note that not all numbers of the form 2k − 1 are relatively prime. In fact, if k is even:

2k − 1 = (2k/2 − 1)(2k/2 + 1).

If k is an odd composite, 2k − 1 is also factorable. For k = ab, the factors of 2k − 1 are (2a − 1)
and

(
2a(b−1) + 2a(b−2) + · · ·+ 2a(0)

)
, whose product is

(
2ab − 1

)
= (2k − 1). For k = p, with

p a prime, the resulting numbers may or may not be prime. These are the famous Merseene’s
numbers (59):

Mp = 2p − 1 (p a prime).

Merseene asserted in 1644 that Mp is prime for:

p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257,

and composite for all other p < 258. The conjecture stood for about 200 years. In 1883,
Pervushin proved that M61 is prime. It is only in 1947 that the whole range stated by Mersenne’s
(p¡258) had been completely checked and it was determined that the correct list is

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107and127.
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Table 3.1: A Partial List of Moduli of the Form 2k and 2k − 1 and Their Prime Factors

Moduli Prime Factors

3 —
7 —

15 3,5
31 —
63 3,7

127 —
255 3,5
511 7,73

1023 3,11,31
2047 23,89
4095 3,5,7,13
8191 —

2k (k = 1, 2, 3, 4 . . .) 2

Table 3.1 lists factors for numbers of the form 2k − 1. Note that any 2n will be relatively prime
to any 2k − 1. The table is from Merrill (58).

Since the addition time is limited in the residue system to the time for addition in the largest
modulus, we should select moduli as close as possible to limit the size of the largest modulus.
Merrill suggests the largest be of the form 2k and the second largest of the form 2k − 1, k the
same. The remaining moduli should avoid common factors. He cites some examples of interest:

Bits to represent Moduli set
17 32, 31, 15, 7
25 128, 127, 63, 31
28 256, 255, 127, 31

If the Merrill moduli are chosen relatively prime, it is possible to represent “almost” as many
objects as the pure binary representation. For example, in the 17-bit case, instead of 217 code
points, we have

25(25 − 1)(24 − 1)(23 − 1) = 217 −O(214).

where O(214) indicates a term on the order of 214. Thus, we have lost less than 1 bit of
representational capability (a loss of 1 bit would correspond to an O(216) loss).

3.2.4 Operations with General Moduli

With the increasing availability of memory cells in current integrated circuit technology, the
restriction to moduli of the forms 2k or 2k − 1 is less important. Thus, it is possible to per-
form addition, subtraction, and multiplication by table look-up. In the most straightforward
implementation, separate tables are kept for each modulus, and the arguments xi and yi (both
modmi

) are concatenated to form an address in the table that contains the proper sum or
product.
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Example 3.6 A table of 1024 or 210 entries is used for moduli up to 32, or 25; i.e., if
xi and yi are 5-bit arguments, then their concatenated 10-bit value forms an address
into a table of results.

5 bits 5 bits
xi yi

address

Memory
(1024 entries)

result

sum or product

In this case, addition, subtraction, and multiplication are accomplished in one access
time to the table. Note that since access time is a function of table size and since the
table size grows at 22n (number of bits to represent a number), residue arithmetic has
a considerable advantage over conventional representations in its use of table look-up
techniques.

3.2.5 Conversion To and From Residue Representation

Conversion from an ordinary weighted number representation into a residue representation is
conceptually simple—but implementations tend to be somewhat less obvious.

Conceptually, we divide the number to be converted by each of the respective moduli, and the
remainders form the residues. The hardware decomposes an integer A with the value A =∑n
i=0 aiβ

i (where β is the radix and ai the value at the ith position) with respect to radix
position, or pairs of positions, simply by the ordered configuration of the digits. In the usual
case, the radix and the modular base are relatively prime and for a single position conversion
we have:

xji = (aiβi)modmj
,

where xji is the ith component of the mj residue of A, and then xj (the residue of Amodmj
) is

xj =

(∑
i

xji

)
modmj

.

?=⇒ Exercise 3.4 If the radix β and mj are not relatively prime, can you still
use the equations just mentioned? Are there any special cases with easier
expressions?

The process of conversion is easy to implement. Since xji = (aimodmj
βimodmj

)modmj
, the

βimodmj
term is precomputed and included in a table that maps ai into xji. Thus, xji is

derived from ai in a single table look-up.
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Example 3.7 Compute the residue mod 7 of the radix 10 integer 1826.
Solution: We begin by decomposing the number

1826 = 1× 1000 + 8× 100 + 2× 10 + 6
= a3 × 103 + a2 × 102 + a1 × 10 + a0

and note that

10mod7 = 3
100mod7 = (10mod7 × 10mod7)mod7 = 2

1000mod7 = (100mod7 × 10mod7)mod7 = 6.

Thus, we have the following table
and get

1826mod7 = (6 + 2 + 6 + 6)mod7 = 6.

a3 xj3 a2 xj2 a1 xj1 a0 xj0
0 0 0 0 0 0 0 0
1 6 1 2 1 3 1 1
2 5 2 4 2 6 2 2
3 4 3 6 3 2 3 3
4 3 4 1 4 5 4 4
5 2 5 3 5 1 5 5
6 1 6 5 6 4 6 6
7 0 7 0 7 0 7 0
8 6 8 2 8 3 8 1
9 5 9 4 9 6 9 2

It is possible to use larger tables where multiple digit positions are grouped together.

Example 3.8 Compute 1826mod7 again but using two digits at a time
Solution: We have 1826 = 18× 100 + 26 = a2 × 102 + a0

and we use the longer corresponding table to get

1826mod7 = (1 + 5)mod7 = 6.

a2 xj2 a0 xj0
0 0 0 0
1 2 1 1
2 4 2 2
3 6 3 3
...

...
...

...
18 1 18 4
...

...
...

...
26 3 26 5
...

...
...

...

Although larger tables have a longer access time, they reduce the number of additions required
and thus may improve the speed of conversion.

There is an important special case of conversion into a residue system: converting a mod2n

number into a residue representation mod2k or mod2k−1. This case is important because of
the previously mentioned coding efficiency with these moduli, and because mod2n numbers
arise from arithmetic operations using conventional binary type logic. To simplify the following
discussion, let us present a simple exercise.
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?=⇒ Exercise 3.5 Prove that for the number X =
∑
xiβ

i the residue Xmodβ−1 =
(
∑

(ximodβ−1)) modβ−1.

The conversion process from a binary representation (actually, a residue mod2n) to a residue
of either 2k or 2k − 1 (n > k) starts by partitioning the n bits into m digits of size k bits; that
is, m = dnk e. Then a binary number Xmod2n with the value

Xbase2 = xn−12n−1 + xn−22n−2 + · · ·+ x0,

where xi has value 0 or 1, is rewritten as:

Xbase2k = Xm−1 (2k)
m−1

+Xm−2 (2k)
m−2

+ · · ·+X0,

where Xi has values {0, 1, . . . 2k−1}. This is a simple regrouping of digits. For example, consider
a binary 24-bit number arranged in eight 3-bit groups.

Xbase2 = 101 011 111 010 110 011 110 000.

This is rewritten in octal (k = 3) as dnk e = d 24
3 e digits:

Xbase23 = 5 3 7 2 6 3 6 0.

The residue Xmod2k = X0 (the least significant k bits), since all other digits in the representa-
tion are multiplied by 2k raised to some power which yields 0 as a residue (recall exercise 3.4).

The residue of Xbase2kmod2k−1 is based on the result of exercise 3.5. We compute that residue
directly from the mod2k representation. If X is a base 2k number with m digits (Xm−1 . . . X0),
and Xi is its ith digit:

Xmod2k−1 =

(
m−1∑
i=0

Xi(2k)
i
mod2k−1

)
mod2k−1.

For X0mod2k−1, the residue is the value X0 for all digit values except X0 = 2k − 1, where the
residue is 0. Similarly, for (Xi(2k)i)mod2k−1, the residue is Xi, where Xi 6= 2k − 1 and the
residue = 0 if Xi = 2k − 1. This is the familiar process of “casting-out” (β− 1). In the previous
example (X in octal),

X = 5 3 7 2 6 3 6 0

and
x = Xmod7 = (5 + 3 + 0 + 2 + 6 + 3 + 6 + 0)mod7.

Now, the sum of two digits mod7 is computed easily from a mod8 adder by recognising three
cases:

1. a+ b < 2k − 1, that is, a+ b < 7; then (a+ b)mod7 = (a+ b)mod8 = a+ b.

2. (a+ b) = 2k − 1, a+ b = 7; then (a+ b)mod7 = 0—that is, cast out 7’s.

3. a+ b > 2k−1, that is, a+ b > 7; then a carryout occurs in a mod8 adder since the largest
representable number mod8 is 7. This end-around carry must be added to the mod8

sum. This is the same idea of DRC calculations using RC hardware presented earlier. If
a+ b > 7, then ((a+ b)mod8 + 1)mod8 = (a+ b)mod7, i.e., we use end-around carry.
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In our example, Xmod7 = (5 + 3 + 0 + 2 + 6 + 3 + 6 + 0)mod7.

5 + 3︸ ︷︷ ︸ 0 + 2︸ ︷︷ ︸ 6 + 3︸ ︷︷ ︸ 6 + 0︸ ︷︷ ︸
octal 10 2 11 6
mod 7 1 + 0 = 1 2 1 + 1 = 2 6︸ ︷︷ ︸ ︸ ︷︷ ︸
octal 1 + 2 = 3 2 + 6 = 10
mod 7 3 1 + 0 = 1︸ ︷︷ ︸
octal 3 + 1 = 4
mod 7 4
and Xmod7 = 4

Conversion from residue representation is conceptually more difficult; however, the implemen-
tation is also straightforward (57).

First, the integer that corresponds to the residue representation that has a “1” in the jth

residue position and zero for all other residues is designated the weight of the jth residue, wj .
The ordering of the residues (the “j”s) is not important; it can be taken as their order in the
physical layout of the datapath in the circuit or in any other order. According to the Chinese
remainder theorem, only one integer (mod the product of relatively prime moduli) has a residue
representation of 0, 0, 1, 0, . . . , 0. That is, it has a zero residue for all positions 6= j and a
residue = 1 at j.

Now the problem is to scale the weighted sum of the residues up to the integer representa-
tion modulo M , the product of the relatively prime moduli. By construction of the weights,
wjmodmk

= 0∀k 6= j, i.e. wj is a multiple of all mk(k 6= j). Hence, the product

∑
k

(xjwj)modmk
= xj

and (xjwj)modmj
= Xmodmj

for all j. Thus, to recover the integer X from its residue
representation, we sum the weighted residue modulo M :

XmodM =
(∑

(xjwj)
)

modM.
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Example 3.9 Suppose we wish to encode integers with the relatively prime moduli
4 and 5. The product (M) is 20. Thus, we encode integers 0 through 19 in residue
representation and find the weights (values of X for which the representations are [1,0]
and [0,1]) as:

w1 = [1, 0] = 5
w2 = [0, 1] = 16.

Suppose we encode two integers, 5 and 13, in this
representation:

5 = [1, 0]
13 = [1, 3]

If we sum them we get:

[1, 0]
+[1, 3]

[2, 3]

To convert this to integer representation:

(x1w1 + x2w2)mod20 = X

(2× 5 + 3× 16)mod20 = 18.

Residues
X Xmod4 Xmod5

0 0 0
1 1 1
2 2 2
3 3 3
4 0 4
5 1 0
6 2 1
7 3 2
8 0 3
9 1 4

10 2 0
11 3 1
12 0 2
13 1 3
14 2 4
15 3 0
16 0 1
17 1 2
18 2 3
19 3 4

3.2.6 Uses of the Residue Number System

In the past, the importance of the residue system was in its theoretic significance rather than
in its fast arithmetic capability. While multiplication is straightforward, division is not, and
comparisons are quite complex. The conversion from and to binary is also a lengthy operation.
In summary, the difficulties in using a residue number system are:

1. the long conversion times,

2. the complexity of number comparisons,

3. the difficulty of overflow detection (whether we are dealing with only positive numbers or
both positive and negative numbers), and

4. the indirect division process.

These reasons have limited the applicability of residue arithmetic. With the availability of
powerful arithmetic technology, this may change for suitable algorithms and applications. In
any event, it remains an important theoretic system, as we shall see when determining the
computational time bounds for arithmetic operations.
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Another important application of residue arithmetic is error checking. If, in an n-bit binary
system:

amod2n

+bmod2n

cmod2n

then it also follows that:
amod2k−1

+bmod2k−1

cmod2k−1

Since 2n and 2k − 1 are relatively prime, it is possible to use a small k-bit adder (n � k) to
check the operation of the n-bit adder. In practice, k = 2, 3, 4 is most commonly used. The
larger k’s are more expensive, but since they provide more unique representations, they afford
a more comprehensive check of the arithmetic. Watson and Hastings (60) as well as Rao (61)
provide more information on using residue arithmetic in error checking.

?=⇒ Exercise 3.6 It has been observed that one can check a list of sums by
comparing the single digit sum of each of the digits, e.g:

374 3 + 7 + 4 = 14; 1 + 4 = 5
281 2 + 8 + 1 = 11; 1 + 1 = 2
523 5 + 2 + 3 = 10; 1 + 0 = 1

1178 5 + 2 + 1
1 + 1 + 7 + 8 = 17; 1 + 7 = 8 ←− check −→ = 8

Does this always work? If yes, prove it. If no, show a counterexample and
develop a scheme that works.

3.3 The limits of fast arithmetic

3.3.1 Background

This section presents the theoretical bounds on speed of arithmetic operations in order to com-
pare the state of the art in arithmetic algorithms against these bounds. Said differently, those
bounds serve as an ideal case to measure the practical results, and provide a clear understanding
of how much more speed improvement can be obtained.

3.3.2 Levels of evaluation

The execution speed of an arithmetic operation is a function of two factors. One is the circuit
technology, and the other is the algorithm used. It can be confusing to discuss both factors
simultaneously; e.g., a ripple carry adder implemented in ECL technology may be faster than
a carry-look-ahead adder implemented in CMOS. In this section, we are interested only in the
algorithm and not in the technology; therefore, the speed of the algorithms will be expressed in
terms of gate delays. Using this approach, the carry-look-ahead adder is faster than the ripple
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carry adder. Simplistically translating gate delays for a given technology to actual speed is done
by multiplying the gate delays by the gate speed.

Modeling at the logic gate level as described above does not capture all the details of real circuits.
Design evaluation is an iterative process with several levels of complexity. At each level different
ideas are compared and the most promising are tried at the following level of complexity. The
possible levels are:

1. Modeling at the logic level just as described above. This does not provide very accurate
estimates and can be used for rough comparisons.

2. Implementing the design in transistors and simulating. This level forces the designer to
think about sizing the transistors and to buffer any gates that are driving a large fan-out.
This level gives a much more accurate estimation of the time delay but it still does not
include the long wire delays.

3. For more accuracy, a layout of the full circuit can be done to extract the details about
the wires. An extracted circuit (or at least its critical path) can then be simulated to give
a more accurate time delay estimate. Area and power consumption estimation are also
possible at this level.

4. The design is actually fabricated and the chip is tested. This is the ultimate test for a
proposed design with a specific technology process and fabrication facilities.

5. To really show the merit of a proposed idea, the whole design can be simulated over a
variety of scalable physical design rule sets and one or more are fabricated and tested.

The model proposed in this chapter is used primarily to evaluate the general trade-offs in the
designs assuming that they use the same technology for the fabrication of real circuits.

One might ask:

Then why is modeling needed? Couldn’t we just fabricate the new design and test
it to see how it compares to other designs?

Such a fabricated circuit is really the ultimate test to check the veracity of any claims made
about a design. However, this is a very costly thing to do every time a designer considers a new
idea. Arithmetic units are used in general purpose processors, dedicated hardware for graphics
and in digital signal processors. For a certain application and design specifications (speed, area
and power consumption), it may be necessary to compare several architectures. The designer
cannot fabricate all of these to compare them. A simple model is needed to help in targeting
a design for use at a different operand width (for example single and double precision), with a
different set of hardware building blocks, or with a different radix and number system. In all
such cases, there is no need to remodel. These variables should be parameters in the model.

3.3.3 The (r, d) Circuit Model

Winograd (62; 63) presented much of the original work to determine a minimum bound on
arithmetic speed. In his model, the speed (in gate delays) of any logic and arithmetic operation
is a function of three items:
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r lines



(r, d)
... Circuit Output

Figure 3.1: The (r, d) circuit.

1. Number of digits (n) in each operand.

2. The maximum fan-in in the circuit (r) which is the largest number of logic inputs or
arguments for a logic element.

3. The number of truth values in the logic system (d). Remember that in general, we can
implement our arithmetic circuits using multi-valued logic elements and not necessarily
binary.

Definition: An (r, d) circuit (Fig. 3.1) is a d-valued logic circuit in which each element has
fan-in of at most r, and can compute any r-argument d-valued logic function in unit time.

In any practical technology, logic path delay depends upon many factors: the number of gates
(circuits) that must be serially encountered before a decision can be made, the logic capability
of each circuit, cumulative distance among all such serial members of a logic path, the electrical
signal propagation time of the medium per unit distance, etc. In many high-speed logic imple-
mentations, the majority of total logic path delay is frequently attributable to delay external
to logic gates, especially the wire delays. Thus, a comprehensive model of performance has to
include technology, distance, geography, and layout, as well as the electrical and logical capabil-
ities of a gate. Clearly, the inclusion of all these variables makes a general model of arithmetic
performance infeasible. Winograd’s (r, d) model of a logic gate is idealised in many ways:

1. There is zero propagation delay between logic blocks.

2. The output of any logic block may go to any number of other logic blocks without affecting
the delay; i.e., the model is fan-out independent. The fan-out of a gate refers to its ability
to drive from output to input a number of other similar gates. Practically speaking, any
gate has a maximum limit on the number of circuits it may communicate with based
on electrical considerations. Also, as additional loads are added to a circuit, its delay is
adversely affected.

3. The (r, d) circuit can perform any logical decision in a unit delay—more comments on this
below.

4. Finally, the delay in, and indeed the feasibility of, implementations are frequently affected
by mechanical considerations such as the ability to connect a particular circuit module
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to another, or the number of connectors through which such an electrical path might be
established. These, of course, are ignored in the (r, d) model.

Despite these limitations, the (r, d) model serves as a useful first approximation in the analysis
of the time delay of arithmetic algorithms in most technologies. The effects of propagation
delay, fan-out, etc., are merely averaged out over all blocks to give an initial estimate as to
the delay in a particular logic path. Thus, in a particular technology, the basic delay within
a block may be something; but the effective delay, including average path lengths, line loading
effects, fan-out, etc., might be three or four times the basic delay. Still, the number of blocks
encountered between functional input and final result is an important and primary determinant
(again, for most technologies) in determining speed.

The (r, d) model is a fan-in limited model, the number of inputs to a logical gate is limited at
r inputs, each gate has one output, and all gates take a unit delay time (given valid inputs) to
establish an output. The model allows for multi-valued logic, where d is the number of values in
the logic system. The model further assumes that any logic decision capable of being performed
within an r inputs d-valued truth system is available in this unit time. This is an important
premise. For example, in a 2-input binary logic system (r = 2, d = 2) there are 16 distinct logic
functions (AND, OR, NOT, NOR, NAND, etc.).

?=⇒ Exercise 3.7 Prove that, in general, there are dd
r

distinct logic functions in
the (r, d) system.

In any practical logic system, only a small subset of these functions are available. These are
chosen in such a way as to be functionally complete, i.e., able to generate any of the other logic
expressions in the system. However, the functionally complete set in general will not perform a
required arbitrary logic function in unit delay, e.g. NORs implementing XOR may require two
unit delays. Thus, the (r, d) circuit is a lower bound on a practical realization. What we will
discover in later chapters is that familiar logic subsets (e.g., NAND) can by themselves come
quite close to the performance predicted by the (r, d) model.

3.3.4 First Approximation to the Lower Bound

Spira (64) summarizes the lower bounds for the computation time of different arithmetic and
logic functions. He shows that if a d-valued output is a function of all n arguments (d-valued
inputs), then t, the number of (r, d) delays, is:

t ≥ dlogr ne

in units of (r, d) circuit delay.

Example 3.10 As shown in Fig. 3.2, for the case of n = 10, r = 4, and d = 2 we get

dlogr ne = dlog4 10e = d1.65e = 2.

Proof: Spira’s bound is proved by induction and follows from the definition of the (r, d) circuit.
The (r, d) circuit has a single output and r inputs; thus, a single level (t = 1) has r inputs. Let
ft designate a circuit with n inputs and t units of delay.
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n = 10



(4, 2)

f

...←1 unit delay→
...

...←− 2 unit delays −→
...

Figure 3.2: Time delays in a circuit with 10 inputs and (r, d) = (4, 2).

Consider the case of unit delay, i.e., t = 1. Since the fan-in in a unit block is r, if the number of
inputs n ≤ r we use one gate to define the function f . In this case, the bound is correct since

1 ≥ dlogr ne.

Now suppose Spira’s bound is correct for delays in a circuit with a time delay equal to t − 1
(ft−1). Let us find the resulting delay in the network (Fig. 3.3) for ft that has n inputs. The
last (r, d) gate in this network has r inputs. at least one of those inputs is an output of another
subcircuit ft−1 which depends on at least dn/re inputs at time t − 1. We are given that the
bound is correct for ft−1 as a function of dn/re inputs. Hence,

t− 1 ≥
⌈
logr

⌈n
r

⌉⌉
≥

⌈
logr

n

r

⌉
.

However, ⌈
logr

n

r

⌉
= dlogr(n)− logr(r)e

= dlogr(n)e − 1.

Hence,
t ≥ dlogr(n)e.

which proves the bound.

Now we can derive the lower bound for addition in the residue number system.
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n inputs



n
r

 ... ft−1

... (r, d)

Figure 3.3: The (r, d) network.

3.3.5 Spira/Winograd bound applied to residue arithmetic

In the addition operation, as we have already noted, it is possible for a low order carry in certain
configurations to affect the most significant output line. The most significant output line then
depends upon all input lines for both operands. According to Spira’s bound

t ≥ dlogr(2× number of inputs per operand)e.

Since residue arithmetic is carry independent between the various moduli mi, we only need to
concern ourselves with the carry and propagation delay for the largest of the moduli. We denote
by α(N) the number of distinct values that the largest modulus represents. Hence, logd α(N)
is the number of d-valued lines required to represent a number for this modulus. Thus, an
addition network for this modulus has 2dlogd α(N)e input lines and the time for addition using
(r, d) circuits in the residue system is at least:

t ≥ dlogr (2dlogd α(N)e)e ,

where α(N) is the number of elements representable by the largest of the relatively prime moduli.

Winograd’s theorem is actually more general than the above. That theorem shows that the
bound is valid not only for the residue arithmetic but for any arithmetic representation obeying
group theoretic properties. In the general case of modular addition, the α(N) function needs
more clarification. In modular arithmetic, we are operating with single arguments mod(An). If
A is prime, then α(N) is simply An. On the other hand, if A is composite (i.e., not a prime),
then A = A1A2 · · ·Am and arithmetic is decomposed into simultaneous operations modAn

1
,

modAn
2
, . . . , modAn

m
. In this case, α(N) is Ani , where Ai is the largest element composing A.

For example, in decimal arithmetic, A = 10n = 2n×5n and independent pair arithmetic (residue
arithmetic) can be defined for An2 and An5 , limiting the carry computation to the largest modules;
in this case α(10n) = 5n.

Frequently, we are not interested in a bound for a particular modular system (say An), but in a
tight lower bound for a residue system that has at least the capacity of An. We designate such
a system (> An), since the product of its relatively prime moduli must exceed An.
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Example 3.11

1. Modular representation:

prime base α(212) = 212,

composite base α(1012) = 512;

Note: a composite base has multiple factors (6= 1); e.g., 10 = 5×2 is a composite
base, while 2 is not composite.

2. Residue representation: Using the set {25, 25 − 1, 24 − 1, 23 − 1}

α(> 216) = 25.

Note that 25 in the previous example is not necessarily the minimum α(> 216). In fact, the
minimum α(> 2k) = pn, where pn is the nth prime in the product function defined as the
smallest product of consecutive primes pi, or powers of primes, that equals or exceeds 2k:

n∏
i=1

pi ≥ 2k.

The selection of moduli to minimise the α function is best illustrated by an example.

Example 3.12 Suppose we wish to design a residue system that has M ≥ 247, i.e., at
least 247 unique representations. We wish to minimise the largest factor of M , α(M),
in order to assure fast arithmetic. If we simply selected the product of the primes, we
get:

2× 3× 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41 > 247;

that is, the α(> 247) for this selection is 41.
We can improve the α function by using powers of the lower order primes. Thus:

25 × 33 × 52 × 7× 11× 13× 17× 19× 23× 29× 31 > 247.

Here, α(> 247) is 25 = 32.

Thus, finding the minimum α function requires that before increasing the product (in the devel-
opment of M) by the next larger prime, pn, we check if there is any lower order prime, pi, which
when raised to its next integer power will lie between pn−1 and pn. That is, for each i < n− 1
and x the next integer power of pi we check if

pn−1 < pxi < pn.

We use all such qualified pxi terms before introducing pn into the product.

3.3.6 Winograd’s Lower Bound on Multiplication

Typically, one thinks of multiplication as successive additions and shifts so that a multiplication
by an n-inputs operand takes n addition times.
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However, Winograd surprises us by saying that multiplication is not necessarily slower than
addition! And, if this were not enough, multiplication can be even slightly faster than addition (5;
63).

Since multiplication is also a group operation involving two n-digit d-valued numbers (whose
output is dependent on all inputs), the Spira bound applies.

t ≥ dlogr 2ne,

where 2n = the total number of d-valued input lines.

To see that multiplication can be performed at the same speed as addition, one need only
consider multiplication by addition of the log representation of numbers: if a × b = c, then
log a+ log b = log c. This is known as the Logarithmic Number System or LNS for short.

Notice that in a log representation, fewer significant product bits are required than in the
familiar linear weighted system. For example, log2 16 = 4.0 requires 4 bits (3, plus one after the
binary point) instead of 5 bits, as 16 = 10000 requires. Of course, log representations require
subtraction (i.e., negative log) for numbers less than 1.0, and zero is a special case.

Since division in this representation is simply subtraction, the bound applies equally to multi-
plication and division. Also, for numbers represented with a composite modular base (i.e., An,
where An = A1 ×A2 × . . .×An), a set of log representations can be used. This coding of each
base A number as an n-tuple {logAi; i = 1 to n} minimises the length of the carry path by
reducing the number of d-valued input lines required to represent a number.

As an analog to residue representation, numbers are represented as composite powers of primes,
and then multiplication is simply the addition of corresponding powers.

Example 3.13
12× 20

12 = 22 × 31 × 50

20 = 22 × 30 × 51

product 240 = 24 × 31 × 51

12÷ 20

12 = 22 × 31 × 50

20 = 22 × 30 × 51

12/20 = 20 × 31 × 5−1 = 3/5

Winograd formalises this by defining β(N) akin to the α(N) of addition and shows that for
multiplication:

t ≥ dlogr (2dlogd β(N)e)e
where

β(N) < α(N)

The exact definition of β(N) is more complex than α(N). Three cases are recognised:
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Case 1: Binary radix (N = 2n); n ≥ 3
β(2n) = 2n−2

for Binary radix (N = 2n); n < 3,

β(4) = 2
β(2) = 1

Case 2: Prime radix (N = pn); p a prime > 2

β(pn) = max
(
pn−1, α(p− 1)

)
e.g., β(59) = α(58) = α(29× 2) = 29

Case 3: Composite powers of primes (N = pn1
1 × p

n2
2 × · · · pnmm )

β(N) = max (β(pn1
1 ), . . . , β(pnii ) . . .) .

Example 3.14

1. N = 210 ⇒ β(210) = 28.

2. N = 510 ⇒ β(510) = 59.

3. N = 1010

1010 = 510 × 210 = β(510, 210)
= max

(
β(510), β(210)

)
= max(59, 28)
= 59

In order to reach the lower bounds of addition or multiplication, it is necessary to use data
representations that are nonstandard. By optimising the representation for fast addition or
multiplication, a variety of other operations will occur much slower. In particular, performing
comparisons or calculating overflow are much more difficult and require additional hardware
using this nonstandard representation. Winograd showed that both these functions require at
least dlogr(2dlog2Ne)e time units to compute (63). In conventional binary notation, both of
these functions can be easily implemented by making minor modifications to the adder. Hence,
the type of data representation used must be decided from a broader perspective, and not based
merely on the addition or multiplication speed.

3.4 Modeling the speed of memories

As an alternative to computing sums or products each time the arguments are available, it is
possible to simply store all the results in a table. We then use the arguments to look up (address)
the answer, as shown in example 3.6.

Does such a scheme lead to even faster arithmetic, i.e., better than the (r, d) bound? The answer
is probably not, since the table size grows rapidly as the number of argument digits, n, increases.
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Figure 3.4: A simple memory model.

For β-based arithmetic, there are β2n required entries. Access delay is obviously a function of
the table size.

Modeling this delay is not the same as finding a lower time bound, however. In ROMs as well
as many storage technologies, the access delay is a function of many physical parameters. What
we present here is a simple model of access delay as an approximation to the access time.

We start by the simple model of Fig. 3.4 for a 16 × 1 ROM. This ROM is made of 16 cells
which store information by having optional connections at each row and column intersection.
For example, in Fig. 3.4, if the lines are normally pulled low then cell 0(A3A2A1A0 = 0000)
stores a zero and cell 4 stores a one. The delay of the ROM is a combination of the X decoder,
the memory cells, and the Y selector. In a real memory the effective load seen by the individual
memory cell when it attempts to change the value on the wire affects its delay. To produce a
simple yet useful model we just assume that the cell has one gate delay. Hence, the delay of the
memory in the figure is made of four gates for fan-in r ≤ 4.

In general, a memory with L address lines has half of the address lines (L/2) decoded in the X
dimension, and according to Spira’s bound the associated delay is dlogr(

L
2 )e.

In the Y -selector delay, the fan-in to each gate is composed of the L/2 address lines plus a single
input from the ROM array. These gates must, in turn, be multiplexed to arrive at a final result.
As there are 2

L
2 array outputs, there are dlogr 2

L
2 e stages of delay, again by the Spira argument.

Hence, the table look-up has the following delays:

X-decoder =
⌈

logr

(
L

2

)⌉
Memory cell = 1
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Y -selector =
⌈

logr

(
L

2
+ 1
)⌉

+
⌈
logr 2

L
2

⌉

Actually, since only the input arriving from the memory cell to the Y -selector is critical, it is
possible to have an improved configuration. Each input to the Y -selector from the memory cells
is brought down to a two input AND gate. The other input to this AND gate is the decoded
Y -selection. Now the Y -decoder delay is increased by one gate delay2 but this is not worse than
the X-decoder plus the memory cell delay. Thus the total memory access time is that of the
X-decoder, followed by the access to the cell, then by the unoverlapped part of the Y-selection.
The unoverlapped part consists of the two input AND gate and a 2

L
2 inputs OR gate with a

delay of:
Unoverlapped Y-selector delay = 1 +

⌈
logr 2

L
2

⌉
,

giving as a total:

ROM delay = 2 +
⌈

logr
L

2

⌉
+
⌈
logr 2

L
2

⌉
.

Example 3.15 For a 1K word ROM, L = 10. If we assume r = 5, what is its access
time?
Solution: The time delays of the different parts are

X-decode = 1
cells = 1

Y -selector = 1 + 3 = 4
total = 6 gate delays

When the ROM is used as a binary operator on n-bit numbers, the preceding formula is expressed
as a function of n, where n = L

2 :

ROM delay = 2 + dlogr ne+ dlogr 2ne .

In many ways, this memory delay points out the weakness of the (r, d) circuit model. In practical
use of VLSI memory implementations, the delay equation above is conservative when normalized
to the gate delay in the same technology. The (r, d) model gives no “credit” to the ROM for its
density, regular implementation structure, limited fan-out requirements, etc.

3.5 Modeling the multiplexers and shifters

Arithmetic circuits, especially for floating point numbers, usually contain a number of multi-
plexers and combinational shifters. A designer needs simple model for those two elements as
well. However, before we introduce new models, let us think for a while on the issues raised

2In the special case where L
2

< r it is simpler to integrate the Y-selector and AND gate to have a gate delay
of 1.
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so far by the (r, d) gate. In section 3.3.3, we alluded to the fan-out problem that the simple
(r, d) model of Winograd ignores and said that the effective delay (that includes the path length,
loading, and fan-out) may be three or four times the basic delay given by the model. We will
attempt to clarify why this difference between the basic delay and the effective one is so in
modern technologies.

Designers of CMOS circuits sometimes present the time delay of a block in what is termed
“fanout of 4” delays: the delay of an inverter driving a load that is four times its own size. This
is commonly abbreviated as FO4 for the “fanout of 4” inverter. A chain of inverters properly
scaled so that each one is four times the size of the preceding one is used to estimate the time
delay of an FO4 inverter. The pull up and pull down times of the middle inverters is then
measured and averaged to the unit called FO4 delay.

Using units of FO4 delays makes our modeling independent of the technology scaling to a large
degree since this elementary gate scales almost linearly with the technology (65). Such units
also make the model take into effect the time delay associated with the small local wires inside
the FO4 inverter as well as those connecting it to neighbouring gates. However, our model does
not include any assumptions about long wires across the chip and the time delay associated
with them. Hence, obviously, it does not give an accurate estimate of the absolute delay of a
logic unit. However, the model is still useful to compare different architectures to estimate their
relative speeds.

In section 3.3.3 we also noted that the (r, d) model assumes that any logical function is per-
formed in the same time delay. In real circuits this equal delay cannot be exact. However, in
our modeling we will not differentiate between the time delay of the different types of gates.
Designers usually change the sizes of the transistors in attempt to equalize the time taken by
all gates on the critical path. The general rule that designers apply is: “keep it close to a FO4
delay.” Hence, in the subsequent we use the term FO4 delay as equivalent to the gate delay
used earlier.

More elaborate models for time delays in CMOS circuits exist. The logical effort model (66)
which includes the fanout as well as a correction for the type of gate used is an important
example. Using logical effort, a designer might resize the transistors inside the logic gates to
achieve the best performance. A model such as logical effort requires a knowledge of the exact
connections between the gates as well as the internal design of the gates. Our target here is to
present a model at a slightly higher level where the designer does not know yet the exact topology
of the circuit nor the specific gates used. The target of our model is for the preliminary work
of evaluation between different algorithms and architectures. Our model is also useful when the
information is only available in the form of block diagrams as is often the case with published
material from other research institutions or industrial companies. It is possible with our simple
model to get a first approximation of the speed of such published designs and compare them to
any new ideas the designer is contemplating.

Having said all that, we are still able to include the effect of fanout in some cases without a
detailed knowledge of the circuit topology. Let us see how this is done with the multiplexers
and shifters.

A single m-to-1 multiplexer is considered to take only one FO4 delay from its inputs to the
output assuming it is realized using CMOS pass gates. This assumption for the multiplexer
is valid up to a loading limit. Small m is the usual case in VLSI design since multiplexers
rarely exceed say a 5-to-1 multiplexer. By simulation, we find that the 2-to-1, 3-to-1 and 4-to-1
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Table 3.2: Time delay of various components in terms of number of FO4 delays. r is the
maximum fan-in of a gate and n is the number of inputs.

Part Delay
Multiplexer, input to output 1
Multiplexer, select to output dlog4(n)e+ 1
Shifter dlog2(n)e
Memory 2 +

⌈
logr

n
2

⌉
+
⌈
logr 2

n
2
⌉

Spira’s bound (no design details) dlogr(n)e

multiplexers exhibit a time delay from the inputs to the output within the range of one FO4
delay. When the input lines are held constant and the select lines change, the delay from the
select lines to the output is between one and two FO4 delays. Hence, for a single multiplexer
the delay from the select lines to the output is bounded by 2 FO4 delays.

A series of m to 1 multiplexers connected to form a larger n-bit multiplexer heavily loads its
select lines. Hence there is even a larger delay from the select lines to the output in this case.
To keep up a balanced design with a fanout of four rule, each four multiplexers should have a
buffer and form a group together. Four such groups need yet another buffer and form a super
group and so on. The delay of the selection is then dlog4(n)e+1. This last formula is applicable
even in the case of a single multiplexer since it yields 2 as given above.

Combinational shifters are either done by a successive use of multiplexers or as a barrel shifter
realized in CMOS pass transistors. In either case, the delay of an n-way shifter from its inputs
to its outputs takes dlog2(n)e FO4 delays. The select lines are heavily loaded as in the case
of multiplexers. However, if the same idea of grouping four basic cells is used then the delay
from the select lines is the same as for the multiplexers. This is smaller than the delay from the
inputs to the outputs in the shifter. Hence the input to output delay dominates and is the only
one used.

In the following chapters, we will discuss some basic cells used to build adders and multipliers
and model their time delays with the simple ideas presented in this chapter.

A designer is able to use these ideas for other pieces of combinational logic where a specific
design is reported in the published papers. If the detailed design is not known, and the logic
has n inputs then Spira’s bound of dlogr(n)e FO4 delays is a safe estimate. The different parts
presented thus far are summarised in Table 3.2. Note that for the memory in this table the
symbol n represents the total number of address lines.

3.6 Additional Readings

The two classic works in the development of residue arithmetic are by Garner (55) and Szabo
and Tanaka (67). They both are recommended to the serious student.

A readable, complete proof of Winograd’s addition bound is found in Stone (57), a book that is
also valuable for its introduction to residue arithmetic.

For those interested in modeling the time delays of circuits, the logical effort method is explained
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in details in a book (68) by the same name.

3.7 Summary

A designer must explore the different possibilities to improve the speed, area, and power con-
sumption of a circuit. This exploration is greatly simplified by good models.

Alternate representation techniques exist using multiple moduli. These are called residue sys-
tems, with the principle advantage of allowing the designer to use small independent operands
for arithmetic. Thus, a multitude of these smaller arithmetic operations are performed simulta-
neously with a potential speed advantage. As we will see in later chapters, the speed advantage
is usually limited to about a factor of 2 to 1 over more conventional representations and tech-
niques. Thus, the difficulty in performing operations such as comparison and overflow detection
limits the general purpose applicability of the residue representation approach. Of course, where
special purpose applications involve only the basic add–multiply, serious consideration could be
given to this approach.

Winograd’s bound, while limited in applicability by the (r, d) model, is an important and fun-
damental limitation to arithmetic speed.
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3.8 Problems

Problem 3.1 Using residues of the form 2k and 2k − 1, create an efficient residue system to
include the range ±32. Develop all tables and then perform the operation −3× 2 + 7.

Problem 3.2 The residue system is used to span the range of 0 to 10 000. What is the best
set that includes the smallest maximum modulus (i.e., α(N))?

1. If any integer modulus is permitted.

2. If moduli only of the form 2k or 2k − 1 are allowed.

Problem 3.3 Repeat the above problem, if the range is to be ±8 192.

Problem 3.4 Analyse the use of an excess code as a method of representing both positive and
negative numbers in a residue system.

Problem 3.5 Suppose that two m bit numbers, A and B, are added and we need to check if
the sum S is correct. An even parity check on the sum is proposed for error detection. Let us
denote the parity of the sum as PS while those of the numbers as PA and PB .

A PA

+ B PB

S PS

1. Show that a scheme where the parity of the sum PS is compared to the parity of (PA+PB)
(i.e. P (PA + PB) ?= PS) is not adequate to detect the errors.

2. Describe an n-bit check (i.e., PA, PB , and PS , each n bits but not necessarily representing
a parity function) so that it is possible to detect arithmetic errors with any of the functions
+,−,×, i.e. P (PA{+,−,×}PB) = PS

3. Find the probability of an undetected error in the new system, where this probability is
defined as:

Number of valid representations
Total number of representations

.

4. Devise an alternative scheme that provides a complete check on the sum using parity. This
system may use logic on the individual bit sum and carry signals to complete the check.

Problem 3.6 In example 3.12 we found the optimum decomposition of prime factors for
M ≥ 247. Find the next seven factors (either a new prime or a power of prime) following the
“32” term to form a new system going up to M ′ > M . What is the new M ′ (approximately)
and the new α(M ′)?

Problem 3.7 If r = 4, d = 2, and M and M ′ as defined in Problem 3.6, find:
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1. the lower bound on addition,

2. the lower bound on multiplication, and

3. the number of equivalent gate delays using a ROM implementation of addition or multi-
plication.

Problem 3.8 It is desired to perform the computation z = 1
x+y in hardware as fast as possible.

Given that x and y are fractions (0.5 ≤ x, y < 1) represented in 8 bits, evaluate the number of
gate delays (r = 4) if

1. a single table look-up is used to evaluate z,

2. a table look-up is used to find 1
x , then the result is added to y using an adder with gate

delays = 4dlogr 2ne where n is the number of bits in one operand of the adder.

If x and y are n-bit numbers, for what values of n is the single look-up table better than the
combination of a table and an adder? (Ignore ceiling function effects in your evaluation.)

Problem 3.9 One of your friends claims that he uses a “cast-out 8’s” check to check decimal
addition. His explanation is:

Find a check digit for each operand by summing the digits of a number. If the
result contains multiple digits, sum them until they are reduced to a single digit.
If anywhere along the way we encounter an ‘8,’ discard the ‘8’ and subtract 1 ! If
we encounter a ‘9,’ ignore it (i.e., treat it as ‘0’). The sum of the check digits then
equals the check digit of the sum as in this example:

3 4 8 3 1 = 3 + 4− 1 + 3 + 1 = 10 = 1 + 0 = 1
+ 8 8 7 2 1 = −1− 1 + 7 + 2 + 1 = 8 = −1
1 2 3 5 5 2 0
1 + 2 + 3 + 5 + 5 + 2 = 18 = 1− 1 = 0

Does this always work? Prove or show a counterexample.

Problem 3.10 Yet another sum checking scheme has been proposed! The details are:

Find the check digits by adding pairs of digits together, reducing to a final pair.
Then subtract the leading digit from the unit digit. If the result is negative but not
equal to −1, recomplement (i.e., add 10) and then add “1.” If −1, leave it alone.
Always reduce to a single digit, either −1, 0, or a positive digit as in this example:

0 3 4 8 3 1 = 03 + 48 + 31 = 82 =−6 = +5
+ 0 8 8 7 2 1 = 08 + 87 + 21 = 116 = 17 = +6

11 = 0
1 2 3 5 5 2
1 2 + 3 5 + 5 2 = 99 = 0

How about this one, will it always work? Prove, or show a counterexample.
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Chapter 4

Addition and Subtraction
(Incomplete chapter)

4.1 Fixed Point Algorithms

4.1.1 Historical Review

The first electronic computers used ripple-carry addition. For this scheme, the sum at the ith

bit is:
Si = Ai ⊕Bi ⊕ Ci,

where S is the sum bit, Ai and Bi are the ith bits of each operand, and Ci is the carry into the
ith stage. The carry to the next stage (i+ 1) is:

Ci+1 = AiBi + Ci(Ai +Bi)

Thus, to add two n-bit operands takes at the most n − 1 carry delays and one sum delay;
but on the average the carry propagation is about log2 n delays (see Problem ?? at the end of
this chapter). In the late fifties and early sixties, most of the time required for addition was
attributable to carry propagation. This observation resulted in many papers describing faster
ways of propagating the carry. In reviewing these papers, some confusion may result unless one
keeps in mind that there are two different approaches to speeding up addition. The first approach
is variable time addition (asynchronous), where the objective is to detect the completion of the
addition as soon as possible. The second approach is fixed time addition (synchronous), where
the objective is to propagate the carry as fast as possible to the last stage for all operand values.
Today the second approach is preferred, as most computers are synchronous, and that is the
only approach we describe here. However, a good discussion of the variable time adder is given
by Weigel (69) in his report “Methods of Binary Additions,” which also provides one of the best
overall summaries of various hardware implementations of binary adders.

Conventional fixed-time adders can be roughly categorized into two classes of algorithms: condi-
tional sum and carry-look-ahead. Conditional sum was invented by Sklansky (70), and has been

115
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i→ 15 14 13 12 11 10 9 8
Xi 2 6 7 7 4 1 0 0
Yi 5 6 0 4 9 7 9 4

08 07 13 12 08 07 12 11 14 13 09 08 10 09 05 04 t0
083 082 082 081 139 138 095 094 t1

08282 08281 13895 13894 t2
082823895 082823894 t3

t4

i→ 7 6 5 4 3 2 1 0
Xi 2 6 9 2 4 3 5 8
Yi 1 5 1 7 1 6 4 5

04 03 12 11 11 10 10 09 06 05 10 09 10 09 13 t0
042 041 110 109 060 059 103 t1

04210 04209 06003 t2
042096003 t3

08282389442096003 t4

Selector bit = The most significant digit of each number.

The addition performed is:

2 6 7 7 4 1 0 0 2 6 9 2 4 3 5 8
5 6 0 4 9 7 9 4 1 5 1 7 1 6 4 5

8 2 8 2 3 8 9 4 4 2 0 9 6 0 0 3

At any digit position, two numbers are shown at t0. The right number assumes no carry input, and
the number on the left assumes that there is a carry input. During t1, pairs of digits are combined,
and now with each pair of digits two numbers are shown. On the right, no carry-in, and on the left, a
carry-in is assumed. This process continues until the true sum results (t4).

Figure 4.1: Example of the conditional sum mechanism.

considered by Winograd (63) to be the fastest addition algorithm, but it never has become a
standard integrated circuit building block. In fact, Winograd showed that with (r, d) circuits, the
lower bound on addition is achievable with the conditional sum algorithm. The carry-look-ahead
method was first described by Weinberger and Smith in 1956 (71), and it has been implemented
in standard ICs that have been used to build many different computer systems. A third algo-
rithm described in this chapter, canonic addition, is a generalization of the carry-look-ahead
algorithm that is faster than either conditional sum or carry-look-ahead. Canonic addition has
implementation limitations, especially for long word length operands. A fourth algorithm, the
Ling adder (72), uses the ability of certain circuits to perform the OR function by simply wiring
together gate outputs. Ling adders provide a very fast sum, performing close to Winograd’s
bound, since the (r, d) circuit premise is no longer valid.

4.1.2 Conditional Sum

The principle in conditional sum is to generate, for each digit position, a sum digit and a carry
digit assuming that there is a carry into that position, and another sum and carry digit assuming
there is no carry input. Then pairs of conditional sums and carries are combined according to
whether there is (and is not) a carry into that pair of digits. This process continues until the
true sum results. Figure 4.1 illustrates this process for a decimal example.
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In order to show the hardware implementation of this algorithm, the equations for a 4-bit slice
can be derived.

The subscripts N and E are used to indicate no carry input and carry input (exists), respectively,
to the 4-bit slice.

At each bit position the following relations hold:

SNi = Ai ⊕Bi
CN(i+1) = AiBi

}
when Ci = 0,

SEi = SNi

CE(i+1) = Ai +Bi

}
when Ci = 1.

The following is a shorthand notation (which also assumes each operation takes a unit gate
delay):

Gi = AiBi

Pi = Ai +Bi

Ti = Ai ⊕Bi (Ti, toggle bit)

For the 4-bit slice i = 0, 1, 2, 3.

SN0 = A0 ⊕B0

SE0 = SN0

SN1 = A1 ⊕B1 ⊕G0

SE1 = A1 ⊕B1 ⊕ P0

SN2 = A2 ⊕B2 ⊕ (G1 + T1G0)
SE2 = A2 ⊕B2 ⊕ (G1 + T1P0)
SN3 = A3 ⊕B3 ⊕ (G2 + T2G1 + T2T1G0)
SE3 = A3 ⊕B3 ⊕ (G2 + T2G1 + T2T1P0)
CN4 = G3 + T3G2 + T3T2G1 + T3T2T1G0

CE4 = G3 + T3G2 + T3T2G1 + T3T2T1P0

Of course, terms such as G1 +T1G0 could also be written in the more familiar form G1 +P1G0,
which is logically equivalent. Replacing Ti with Pi may simplify the implementation.

Thus, the 4-bit sums are generated, and the true sum is selected according to the lower order
carry-in, i.e:

S0 = SE0C0 + SN0C0

...
...

...
S3 = SE3C0 + SN3C0

Figure 4.2 shows the logic diagram of a 4-bit slice (conditional sum) adder.
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T0

Figure 4.2: 4-bit conditional sum adder slice with carry-look-ahead (gate count= 45).
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In general, the true carry into a group is formed from the carries of the previous groups. In
order to speed up the propagation of the carry to the last stage, look-ahead techniques can be
derived assuming a 4-bit adder as a basic block. The carry-out of bit i(Ci) is valid whenever a
carry-out is developed within the 4-bit group (CNi), or whenever there is a conditional carry-out
(CEi) for the group and there was a valid carry-in (Ci−4). Using this, we have:

C4 = CN4 + CE4C0

C8 = CN8 + CE8C4

C8 = CN8 + CE8CN4 + CE8CE4C0

C12 = CN12 + CE12C8

C12 = CN12 + CE12CN8 + CE12CE8CN4 + CE12CE8CE4C0

C16 = CN16 + CE16C12

C16 = CN16 + CE16CN12 + CE16CE12CN8 + CE16CE12CE8CN4 +
CE16CE12CE8CE4C0

Note that a fan-in of 5 is needed in the preceding equations to propagate the carry across 16
bits in two gate delays. Thus, 16-bit addition can be completed in seven gate delays: three to
generate conditional carry, two to propagate the carry, and two to select the correct sum bit.
This delay can be generalized for n bits and r fan-in (for r ≥ 4 and n ≥ r) as:

t = 5 + 2
⌈
logr−1(dn/re − 1)

⌉
(4.1)

The factor 5 is determined by the longest C4 path in Figure 4.2. The n bits of each operand are
broken into dnr e groups, as shown in the equations for CN4 and CE4, but since the lowest order
group (C4) is already known, only dnr e− 1 groups must be resolved. Finally, sum resolution can
be performed on r− 1 groups per AND–OR gate pair (see preceding equation for C16), with two
delays for each pair.

If r � 1, then r ' r − 1, and if r � n, then

t ' 3 + 2dlogr ne

The delay equation (4.1) is correct for r ≥ 4. For r = 3 or r = 2 and n ≤ r, then t = 7. The
cases r = 3 and r = 2 where n > r are left as an exercise.

4.1.3 Carry-Look-Ahead Addition

In the last decade, the carry-look-ahead has become the most popular method of addition,
due to a simplicity and modularity that make it particularly adaptable to integrated circuit
implementation. To see this modularity, we derive the equations for a 4-bit slice.

The sum equations for each bit position are:

S0 = A0 ⊕B0 ⊕ C0

S1 = A1 ⊕B1 ⊕ C1

S2 = A2 ⊕B2 ⊕ C2

S3 = A3 ⊕B3 ⊕ C3

 in general:
Si = Ai ⊕Bi ⊕ Ci
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Figure 4.3: 16-bit conditional sum adder. The dotted line encloses a 4-bit slice with internal
look ahead. The rectangular box (on the bottom) accepts conditional carries and generates fast
true carries between slices. The worst case path delay is seven gates.

The carry equations are as follows:

C1 = A0B0 + C0(A0 +B0)
C2 = A1B1 + C1(A1 +B1)
C3 = A2B2 + C2(A2 +B2)
C4 = A3B3 + C3(A3 +B3)

 in general:
Ci+1 = AiBi + Ci(Ai +Bi)

The general equations for the carry can be verbalized as follows: there is a carry into the (i+1)th

stage if a carry is generated locally at the ith stage, or if a carry is propagated through the ith

stage from the (i − 1)th stage. Carry is generated locally if both Ai and Bi are ones, and it is
expressed by the generate equation Gi = AiBi. A carry is propagated only if either Ai or Bi is
one, and the equation for the propagate term is Pi = Ai +Bi.
We now proceed to derive the carry equations, and show that they are functions only of the
previous generate and propagate terms:

C1 = G0 + P0C0

C2 = G1 + P1C1

Substitute C1 into the C2 equation (in general, substitute Ci in the Ci+1 equation):

C2 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0
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We can now generalize the carry-look-ahead equation:

Ci+1 = Gi + PiGi−1 + PiPi−1Gi−2 + · · ·+ PiPi−1 . . . P0C0

This equation implies that a carry to any bit position could be computed in two gate delays,
if it were not limited by fan-in and modularity; but the fan-in is a serious limitation, since
for an n-bit look ahead the required fan-in is n, and modularity requires a somewhat regular
implementation structure so that similar parts can be used to build adders of differing operand
sizes. This modularity requirement is what distinguishes the CLA algorithm from the canonic
algorithm discussed in the next section.

The solution of the fan-in and modularity problems is to have several levels of carry-look-ahead.
This concept is illustrated by rewriting the equation for C4 (assuming fan-in of 4, or 5 if a C0

term is required):

C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0︸ ︷︷ ︸+P3P2P1P0︸ ︷︷ ︸ C0

Group generate = G′0 Group propagate = P ′0

C4 = G′0 + P ′0C0

Notice the similarity of C4 in the last equation to C1. Similarly, the equations for C5 and C6

resemble those for C2 and C3.

The CLA level consists of the logic to form fan-in limited generate and progate terms. It requires
two gate delays. With a fan-in of 4, two levels of carry-look-ahead (CLA) are sufficient for 16
bit additions. Similarly, CLA of between 17 and 64 bits requires a third level. In general, CLA

across 17 to 64 bits requires a second level of carry generator. In general, the number of CLA

levels is:
dlogr ne

where r is the fan-in, and n is the number of bits to be added.

We now describe the hardware implementation of a carry-look-ahead addition. It is assumed
that the fan-in is 4; consequently, the building blocks are 4-bit slices. Two building blocks are
necessary. The first one is a 4-bit adder with internal carry-look-ahead across 4 bits, and the
second one is 4 group carry generator. Figure 4.4 shows the gate level implementation of the
4-bit CLA adder, according to the equations for S0 through S3 and C1 through C3.

Figure 4.5 is the gate implementation of the four group CLA generator. The equations for this
generator are as follows, where G′0 and P ′0 are the (0–3) group generate and propagate terms (to
distinguish them from G0 and P0, which are bit generate and propagate terms):

C4 = G′0 + P ′0C0

C8 = G′1 + P ′1G
′
0 + P ′1P

′
0C0

C12 = G′2 + P ′2G
′
1 + P ′2P

′
1G
′
0 + P ′2P

′
1P
′
0C0

and the third level generate (G′′) and propagate (P ′′) terms are:

G′′ = G′3 + P ′3G
′
2 + P ′3P

′
2G
′
1 + P ′3P

′
2P
′
1G
′
0

P ′′ = P ′3P
′
2P
′
1P
′
0



122 CHAPTER 4. ADDITION AND SUBTRACTION (INCOMPLETE CHAPTER)

Figure 4.4: 4-bit adder slice with internal carry-look-ahead (gate count = 30).

The G′′ and P ′′ are more completely labeled G′′0 and P ′′0 . The corresponding third level carrys
are:

C16 = G′′0 + P ′′0 C0 (C0 can be end around carry)
C32 = G′′1 + P ′′1 G

′′
0 + P ′′1 P

′′
0 C0

C48 = G′′2 + P ′′2 G
′′
1 + P ′′2 P

′′
1 G
′′
0 + P ′′2 P

′′
1 P
′′
0 C0

C64 = G′′3 + P ′′3 G
′′
2 + P ′′3 P

′′
2 G
′′
1 + P ′′3 P

′′
2 P
′′
1 G
′′
0 + P ′′3 P

′′
2 P
′′
1 C0

The implementation of a 64-bit addition from these building blocks is shown in Figure 4.6. From
this figure, we can derive the general equation for worst case path delay (in gates) as a function
of fan-in and number of bits.

The longest path in the 64-bit addition consists of the following delays:
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Figure 4.5: Four group carry-look-ahead generator (gate count = 14).

2 GATE DELAYS

S63

C64

C63

WORST CASE PATH DELAY

2 GATE DELAYS 2 GATE DELAYS

C0

C0

C 0C 4C 8C 12C 16C 20C 24C 28C 32C 36C 40C 44C 48C 52C 56C 60

S3 S1
S2 S0

S63 S61
S62 S60

B63 B61
A62 A60

B3 B0
A3 A0

Figure 4.6: 64-bit addition using full carry-look-ahead. The first row is made of a 4-bit adder
slice with internal carry-look-ahead (see Figure 4.4). The rest are look ahead carry generators
(see Figure 4.5). The worst case path delay is 12 gates (the delay path is strictly for addition).
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• Initial generate term per bit 1 gate delay
• Generate term across 4 bits 2 gate delays
• Generate term across 16 bits 2 gate delays
• C48 generation 2 gate delays
• C60 generation 2 gate delays
• C63 generation 2 gate delays
• S63 generation 1 gate delays

Total = 12 gate delays

In general, for n-bit addition limited by fan-in of r:

• Generate term per bit 1 gate delay
• Generate Cn 2×(2(number of CLA levels)−1) gate delays
• Generate Sn 1 gate delay

Total CLA gate delays = 2 + 4 (number of CLA levels)− 2

Total CLA gate delays = 4 (number of CLA levels).

The number of CLA levels is dlogr ne.

CLA gate delays = 4dlogr ne

Before we conclude the discussion on carry-look-ahead, it is interesting to survey the actual
integrated circuit implementations of the adder-slice and the carry-look-ahead generator. The
TTL 74181 (73) is a 4-bit slice that can perform addition, subtraction, and several Boolean
operations such as AND, OR, XOR, etc. Therefore, it is called an ALU (Arithmetic Logic Unit)
slice. The slice depicted in Figure 4.4 is a subset of the 74181. The 74182 (73) is a four-
group carry-look-ahead generator that is very similar in implementation to Figure 4.5. The only
difference is in the opposite polarity of the carries, due to an additional buffer on the input
carry. (Inspection of Figure 4.6 shows that the Generate and Propagate signals drive only one
package, regardless of the number of levels, whereas the carries’ driving requirement increases
directly with the number of levels.) For more details on integrated circuit implementation of
adders, see Waser (74).

4.1.4 Canonic Addition: Very Fast Addition and Incrementation

So far, we have examined the delay in practical implementation algorithms—conditional sum
and CLA—as well as reviewing Winograd’s theoretic delay limit. Now Winograd (62) shows
that his bound of binary addition is achievable using (r, d) circuits with a conditional sum
algorithm. The question remaining is what is the fastest known binary addition algorithm using
conventional AND–OR circuits (fan-in limited without use of a wired OR).

Before developing such fast adders, called canonic adders, consider the problem of incremen-
tation—simply adding one to X, an n-bit binary number. Winograd’s approach would yield a
bound on an increment of:

Increment (r, d) delays = dlogr(n+ 1)e.
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Such a bound is largely realizable by AND circuits, since the longest path delay (the highest
order sum bit, Sn) depends simply on the configuration of the old value of X. Thus, if we
designate I as the increment function:

Xn−1 Xn−2 . . . X0

+ I

Cn Sn−1 Sn−2 . . . S0

.

Then Cn, the overflow carry, is determined by:

Cn =
n−1∏
i=0

Xi · I (i.e., the AND of all elements in X),

and intermediate carries, Cj :

Cj =
j−1∏
i=0

Xi · I.

Cn is implementable as a fan-in limited tree of AND circuits in:

Cn gate delays = dlogr(n+ 1)e.

Each output Sj bit in the increment would have an AND tree:

S0 = X0 ⊕ I
Sj = Xj ⊕ Cj

Thus, the delay in realizing Sn−1 (the nth sum bit) is:

Increment gate delays = dlogr ne+ 1,

that is, the gate delays in Cn−1 plus the final exclusive OR.
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Example 4.1
A 15-bit incrementer (bits 0–14) might have the following high order configuration for
S14 and C15.

14

14

The amount of hardware required to implement this approach is not as significant as
it first appears. The carry-out circuitry requires:⌈n

r

⌉
+
⌈
n

r
· 1
r

⌉
+ . . . gates,

or approximately ⌈n
r

⌉(
1 +

1
r

+
1
r2
· · ·
)
,

where the series consists of only a few terms, as it terminates for the lowest k that
satisfies: ⌊ n

rk

⌋
= 1.

The familiar geometric series (1 + 1
r + 1

r2 + · · ·) can conservatively be replaced by its
infinite sum r

r−1 . Thus:

number of increment gates in Cn ≤
⌈n
r

⌉( r

r − 1

)
and summing over the carry terms and adding the n exclusive ORs for the sums,

total increment gates ≤
n∑
i=1

⌈
i

r

⌉(
r

r − 1

)
+ n

or, ignoring effects of the ceiling,

total increment gates ' n(n+ 1)
2(r − 1)

+ n.

Now, most of these gates can be shared by lower order sum terms (fan-out permitting). Thus,
for lower order terms (e.g., Sn−2):

Sn−2 = (Xn−2 ·Xn−3 · · ·Xn−2−r) · (existing terms from Cn−2−r).
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Thus, only two additional circuits per lower order sum bit are required. The total number of
increment gates is then approximately:

increment gates '
⌈n
r

⌉
+ 2(n− 1) + n '

⌈n
r

⌉
+ 3n,

e.g., for r = 4 and n = 32 the total number of gates is 104 gates.

The same technique can be applied to the problem of n-bit binary addition. Here, in order to
add two n-bit binary numbers:

Xn−1 Xn−2 . . . X0

+ Yn−1 Yn−2 . . . Y0

Sn−1 Sn−2 . . . S0

We have:

Cn = Gn−1 designatedas Cn = Cn−1
n

+Pn−1 ·Gn−2 +Cn−2
n

+Pn−1 · Pn−2 ·Gn−3 +Cn−3
n

+ +
...

...
+
∏n−1
i=1 Pi ·G0 +C0

n

,

and for each sum bit Sj (n− 1 ≥ j > 0),

Sj = Xj ⊕ Yj ⊕ Cj
and S0 = X0 ⊕ Y0

In the above, Gi = Xi · Yi, Pi = Xi + Yi and Cin designates the term that generates a carry-out
of bit i and propagates it to a bit n. This is simply an AND–OR expansion of the required
carry—hence the term “canonic addition.”

The Cn term consists of an n-way OR, the longest of whose input paths is an n-way AND which
generates in bit 0 and propagates elsewhere. Note that since Gi = Xi · Yi, a separate level to
form Gi is not required, but each Pi requires an OR level.

Thus, the number of gate delays is dlogr ne for the AND tree and a similar number for the OR

tree, plus one for the initial Pi:

Gate delays in Cn = 2dlogr ne+ 1.

The formation of the highest order sum (Sn−1) requires the formation of Cn−1 and a final
exclusive OR. Thus,

Gate delays in Sn = 2dlogr(n− 1)e+ 2.

Actually, the delay bound can be slightly improved in a number of cases by arranging the inputs
to the OR tree so that short paths such as Gn−1 or Pn−1 · Gn−1 are assigned to higher nodal
inputs, while long paths such as

∏n−1
i=k Pk ·Gk (k = 1, 2, 3 . . .) are assigned to a lower node.

This prioritization of the inputs to the OR tree provides a benefit in a number of cases where the
number of inputs n exceeds an integer tree boundary by a limited amount. The AND terms use
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from one gate delay to dlogr ne gate delays. If we can site the slow AND terms in fast positions
in the OR tree (and there are enough of them!), we can save a gate delay (δ = 1). For example,
if r = 4 and n = 7, we would have

C7 = G6 +P6 ·G5 +P6P5G4 +P6P5P4G3 +P6P5P4P3G2 +P6P5P4P3P2G1 +P6P5P4P3P2P1G0

The first four AND terms are generated in one gate delay, while the remaining three terms
require two delays (r = 4). However, the OR tree consists of seven input terms—four at the
second level and three at the root. Thus, the slow AND terms can be accommodated in the
three fast (first-level) sites in the OR tree, saving a gate delay.

More generally, the number of long path terms in the AND tree is

n− rdlogr ne−1.

The OR (with dlogr ne levels) has
rdlogr ne−1,

total preferred sites of which ⌈
n− rdlogr ne−1

r − 1

⌉
have been used for the highest level inputs. Thus,

rdlogr ne−1 −
⌈
n− rdlogr ne−1

r − 1

⌉
are the number of preferred sites available in the OR tree. Now, if the available site equals or
exceeds the number of long AND paths, we have saved one gate delay:

n− rdlogr ne−1 ≤ rdlogr ne−1 − dlogr(n− rdlogr ne−1e

n ≤ 2rdlogr ne−1 − dlogr(n− rdlogr ne−1)e

Thus, the exact delay is:

Canonic addition gate delays = 2dlogr(n− 1)e+ 2− δ

where δ is the Kronecker δ and is equal to 1 whenever dlogr ne > 1 and the above integer
boundary condition is satisfied.

Consider the example r = 4 and n = 20.

Now dlog4 20e = 3

and rdlogr ne−1 = r3−1 = 16

and log4(20− 42) = 1

Since n = 20 ≤ 32− 1
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then δ = 1

Gatedelays = 2dlog4 19e+ 2− 1

= 7

Whereas

Winograd’s bound = dlog4 2 · 20e = dlog4 40e,

= 3

Example 4.2
The AND tree for the generate in bit 0 and propagate to bit 19 (C0

19) is:

Terms C1
19, C2

19 and C3
19 (two stages of delay) will have similar structures (i.e., three

stages of delay), however, lower stages Ci19 for i between 4 and 14 have two stages of
delay, while C15

19 through G19 have one stage.

Thus, in the OR tree we must insure that terms C0
19 through C3

19 are preferentially situated
(δ = 1).
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The amount of hardware required is not determinable in a straightforward way, especially for
the AND networks. For the OR networks, we have:

4bitsat6gates
4bitsat5gates
8bitsat4gates
4bitsat1gate

,

or 80 gates total. To this must be added 20× 2 gates for initial propagate and generate terms.
The AND gates required for bit 19 include the six gates in the AND tree used to form C0

19

plus the AND circuits required to form all other Ci19 (i from 1 to 18), terms. Since many of
the AND network terms have been formed in C0

19, only two additional gates are required for
each i in Ci19; one to create an initial term and one to collect all terms. Actually, we ignore a
number of cases where only one additional gate is required. Then the C19 AND network consists
of 6 + 2 · 18 = 42 gates. So far, we have ignored fan-out limitations, and it is worth noting
that many terms are heavily used—up to 20 times. However, careful design using consolidated
terms (gates) where appropriate can keep the fan-out down to about 10—probably a practical
maximum. Thus, fan-out limits the use of C19 terms in C18, etc. But the size of the AND trees
decreases for intermediate bits Cj ; e.g., for C9 about 13 gates are required. As a conservative
estimate, assume that (1/2)(42) gates are required as an average for the AND networks. The
total number of gates is then:

AND networks: (1/2)(42)(20) = 420
OR networks: = 80
initial terms: 2× 20 = 40
Exclusive ORs: 2× 20 = 40
total: = 580 gates

While 580 gates (closer to 450 with a more detailed count) is high compared to a 20-bit CLA

addition, the biggest drawbacks to canonic addition are fan-out and topology, not cost. The
high average gate fan-out coupled with relatively congested layout problems leads to an almost
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three-dimensional communication structure within the AND trees. Both serve to significantly
increase average gate delay. Still, canonic addition is an interesting algorithm with practical
significance in those cases where at least one operand is limited in size.

4.1.5 Ling Adders

Adders can be developed to recognize the ability of certain circuit families to perform special
logic functions very rapidly. The classic case of this is the ability to “DOT” gates together. Here,
the output of AND gates (usually) can simply be wired together, giving an OR function. This
wired OR or DOT OR has no additional gate delay (although a small additional loading delay
is experienced per wired output, due to a line capacitance). Another circuit family feature of
interest is complementary outputs: each gate has both the expected (true) output and another
complemented output. The widely used current switching (sometimes called emitter coupled
or current mode) circuit family incorporates both features. Of course, using the DOT feature
may invalidate the premise of the (r, d) circuit model that all logic decisions have unit delay
with fan-in r. Ling (72) has carefully developed adder structures to capitalize on the DOT OR

ability of these circuits. By encoding pairs of digit positions (Ai, Bi, Ai−1, Bi−1), Ling redefines
our notion of sum and carry. To somewhat oversimplify Ling’s approach, we attribute the local
(lower neighbor) carry enable terms (Pi−1) to the definition of the sum (Si), leaving a reduced
synthetic carry (designated Hi+1) for non-local carry propagation (Pi = Ai + Bi). Ling finds
that the sum (Si) at bit i can be written as:

Si = (Hi+1 ⊕ Pi) +Gi ·Hi · Pi−1

= (Gi + Pi−1 ·Hi)⊕ Pi +Gi ·Hi · Pi−1
,

where Hi is defined by the recursion

Hi+1 = Gi +Hi · Pi−1.

While the combinatorics of the derivation are formidable, the validity of the above can also be
seen from the following table. Note that the recursion is equivalent to:

Hi+1 = Gi + Ci

compared with
Ci+1 = Gi + PiCi.

Now

Pi ·Hi+1 = PiGi + PiCi

= Gi + PiCi

= Ci+1

or
Ci = Pi−1 ·Hi,

and
Hi+1 = Gi + Ci = Gi + Pi−1Hi.
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Also, since
Si = Ai ⊕Bi ⊕ Ci,

then
Si = Ai ⊕Bi ⊕ Pi−1Hi.

Function Inputs Outputs

f(n) Ai Bi Hi Si Hi+1

0 0 0 0 0 0
1 0 0 1 Pi−1 Pi−1

2 0 1 0 1 0

3 0 1 1 P i−1 Pi−1

4 1 0 0 1 0

5 1 0 1 P i−1 Pi−1

6 1 1 0 0 1
7 1 1 1 Pi−1 1

Hi is conditioned by Pi−1 in determining the equivalent of Ci. If a term in the table has
Hi = 0, the equivalent Ci must be zero and the Si determination can be directly made
(as in the cases f(0), f(2), f(4), f(6)). Now whenever Hi = 1 determines the sum outcome,
the Pi−1 dependency must be introduced. For f(1) and f(7) the Si = 1 if Pi−1 = 1; for f(3)
and f(5), the Si = 0 if Pi−1 = 1 (i.e., f(3) and f(5) are conditioned by P i−1). A direct expansion
of the minterms of

Si = (Gi + Pi−1 ·Hi)⊕ Pi +Gi ·Hi · Pi−1

produces the Si output in the above table:

Si = Pi−1 · (f(1) + f(7)) + P i−1 · (f(3) + f(5)) + f(2) + f(4).

The synthetic carry Hi+1 has similar dependency on Pi−1; for f(3) and f(5), Hi+1 = 1 occurs if
Pi−1 = 1. For f(6) and f(7) Hi+1 = 1 regardless of the Hi · Pi−1, since Gi = 1. The f(1) term
is an interesting “don’t care” term introduced to simplify the Hi+1 structure. This f(4) term
in Hi does not affect Si, since Si depends on Hi. Now Si+1 cannot be affected by Hi+1 (f(1)),
since Pi (f(1)) = 0. Similarly Hi+2 also contains the term Hi+1Pi, which for f(1) is zero by
action of Pi.

To understand the advantage of the Ling adder, consider the conventional C4 (carry-out of bit
3), as contrasted with H4:

C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0,

H4 = G3 + P2G2 + P2P1G1 + P2P1P0G0.

Without the DOT function C4 is implementable (r = 4) in three gate delays (two shown, plus
one for either P or G). C4 can be expanded in terms of the input arguments:

C4 = A3B3 + (A3 +B3)A2B2 + (A3 +B3)(A2 +B2)A1B1

+(A3 +B3)(A2 +B2)(A1 +B1)A0B0
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C4 = A3B3 +A3A2B2 +B3A2B2 +A3A2A1B1

+A3B2A1B1 +B3A2A1B1 +B3B2A1B1

+A3A2A1A0B0 +A3A2B1A0B0 +A3B2A1A0B0

+A3B2B1A0B0 +B3A2A1A0B0 +B3A2B1A0B0

+B3B2A1A0B0 +B3B2B1A0B0

If we designate s as the maximum number of lines that can be dotted, then we see that to
perform C4 in one dotted gate delay requires r = 5 and s = 15.

Now consider the expansion of H4:

H4 = A3B3 + (A2 +B2)A2B2 + (A2 +B2)(A1 +B1)A1B1

+(A2 +B2)(A1 +B1)(A0 +B0)A0B0

H4 = A3B3 +A2B2 +A2A1B1 +B2A1B1

+A2A1A0B0 + A2B1A0B0

+B2A1A0B0 + B2B1A0B0

Thus, the Ling structure provides one dotted gate delay with r = 4 and s = 8.

Higher order H look-ahead can be derived in a similar fashion by defining a fan-in limited I
term as the conjunction of Pis; e.g.,

I7 = P6P5P4P3.

Rather than dot ORing the summands to form the Pi term, the bipolar nature of the ECL circuit
can be used to form the OR in one gate delay:

Pi = Ai +Bi

and the Pi terms can be dot ANDed to form the I terms. Thus, I7, I11, and I15 can be found
with one gate delay.

Suppose we designate the pseudo-carryout of each four bit group as H ′16, H ′12, H ′8, H ′4, and the
group carry-generate as G4, G8, G12. Then

H4 = H ′4

H8 = H ′8 + I7H
′
4

H12 = H ′12 + I11H
′
8 + I11I7H

′
4

H16 = H ′16 + I15H
′
12 + I15I11H

′
8 + I15I11I7H

′
4.

Of course,

C16 = P15H16

= P15(H ′16 + I15H
′
12 + I15I11H

′
8 + I15I11I7H

′
4),
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Fixed Radix (Binary)
Winograd’s Conditional sum Carry- Canonic Ling
lower bound look-ahead

Formula dlogr 2ne 5 + 2
⌈

logr−1

(
dnr e − 1

)⌉
4dlogr ne 2dlogr(n− 1)e+ 2− δ dlogr

n
2 e+ 1

gate delays
n = 64 bits 4 9 12 8 4∗

r = fan-in = 5

Variable Radix (Residue)
Winograd’s ROM
lower bound look-up table

Formula dlogr 2dlogd α(n)ee 2 + dlogrme+ dlogr 2me
gate delays
n = 64 bits d = 2, α(> 2n) = 59, m = dlogd α(> 2n)e = 6

r = fan-in = 5 2 7

∗ The Ling adder requires dot OR of 16 terms and assumes no additional delay for such dotting.

Table 4.1: Comparison of addition speed (in gate delay) of the various hardware realizations
and the lower bounds of Winograd.

since terms such as
I7H

′
4 = P6P5P4P3H4 = P6P5P4C4.

Thus,

I15I11I7H
′
4 =

14∏
i=4

Pi · C4, G′4 = C4.

Similarly,

I15I11H
′
8 = I15P10P9P8P7H

′
8

= I15P10P9P8G
′
8

=
14∏
i=8

Pi ·G′8.

Ling suggests that the conditional sum algorithm be used in forming the final result. Thus, S31

through S16 is found for both C16 = 0 and C16 = 1; these results are gated with the appropriate
true value of C16 and dot ORed in one gate delay. The “extra” delay forming C16 from P15H16

adds no delay, since P15 is ANDed with the sum selector MUX function as below:

S = SEC16 + SNC16

S = SEP15H16 + SN (P15 +H16)
= SEP15H16 + SNP15 + SNH16,

where SE and SN represent the higher order 16-bit sum with and without carry-in. (ECL
circuits have complementary outputs; H16 is always available.) Thus, the Ling adder can realize
a sum delay in:

Ling gate delays = dlogr
n
2 e+ 1 ,

so long as the gates can be dotted with capability 2r−1 ≤ s.
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X i + 1

C i + 1

CARRY-LOOK-AHEAD

CSA

i + 1 i - 1S i 

X 1 Y 1 Z 1 X i - 1

CPA

Figure 4.7: Addition of three n-bit numbers.

4.1.6 Simultaneous Addition of Multiple Operands: Carry-Save Adders.

Frequently, more than two operands (positive or negative) are to be summed in the minimum
time. In fact, this is the basic requirement of multiplication. Clearly, one can do better than
simply summing a pair and then adding each additional operand to the previous sum. Consider
the following decimal example:

Carry- 176
Saving 324
Addition 558
Carry- 948 Column sum
Propagating 11 Column carry
Addition 1058 Total

Regardless of the number of entries to be summed, summation can proceed simultaneously on all
columns generating a pair of numbers: column sum and column carry. These numbers must be
added with carry propagation. Thus, it should be possible to reduce the addition of any number
of operands to a carry-propagating addition of only two: Column sum and Column carry. Of
course, the generation of these two column operands may take some time, but this should be
significantly less than the serial operand by operand propagating addition.

Consider the addition of three n-bit binary numbers. We refer to the structure that sums a
column as a carry-save adder (CSA). That is, the CSA will take 3 bits of the same significance
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and produce the sum (same significance) and the carry (1 bit higher significance). Note that
this is exactly what a 1-bit position of a binary full adder does; but the input connections are
different between CSA and binary full adder. Suppose we wish to add X, Y , and Z. Let Xi, Yi,
and Zi represent the ith-bit position.

We thus have the desired structure: the binary-full adder. However, instead of chaining the
carry-out signal from a lower order position to the carry-in input, the third operand is introduced
to the “carry-in” and the output produces two operands which now must be summed by a
propagating adder. Binary full adders when used in this way are called carry-save adders (CSA).
Thus, to add three numbers we require only two additional gate delays (the CSA delay) in excess
of the carry propagate adder delay.

The same technique can be extended to more than three operand addition by cascading CSAs.

Suppose we wish to add W , X, Y , Z; the ith-bit position might be implemented as in Figure 4.8.
High-speed multiplication depends on rapid addition of multiples of the multiplicand and, as we

W 1 X 1 Y 1 Z 1

C i

i - 1

i - 1i - 1

CARRY PROPAGATE

i  th
position

i  th
position

Figure 4.8: Addition of four n-bit numbers.

shall see in the next chapter, uses a generalization of the carry-save adder technique.
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4.2 Problems

Problem 4.1 What is the gate delay of a 24-bit adder for the following implementations
(r = 4)?

1. CLA.

2. Conditional sum.

3. Canonic adder.

Problem 4.2 In this problem we attempt to estimate the delays of various adders.

1. Suppose r = 4 and the maximum dot-OR capability is also 4; for a 64-bit addition the
Ling adder will require how many unit delays, while a canonic adder requires how many
unit delays?

2. If six 32-bit operands are to be added simultaneously, how many unit delays are required
in CSAs before two operands can be added in a CPA?

3. In a certain machine, the execution time for floating point addition is greater than that
for floating point multiplication. Explain (i.e., state the delay conditions which lead to
this situation).

Problem 4.3 The System 370 effective address computation involves the addition of three
unsigned numbers, two of 24 bits and one of 12 low order bits.

1. Design a fast adder for this address computation (an overflow is an invalid address).

2. Extend your adder to accommodate a fast comparison of the effective address with a 24bit

upper bound address.

Problem 4.4 Design a circuit that can be connected to a 4-bit ALU to detect 2’s complement
arithmetic overflow. The ALU takes two 4-bit input operands and provides a 4-bit output result
defined by three function bits. The ALU can perform eight functions, defined by F2F1F0. The
object is to make the circuit as fast as possible. Use as many gates as you like.

For gate timing, use the following:

NAND, NOR, NOT: 5 units
OR, AND: 7 units

XOR: 10 units

Note: Assume delay through ALU � single gate delay.
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F2 F1 F0 Function
0 0 0 0
0 0 1 B −A
0 1 0 A−B
0 1 1 A+B
1 0 0 A⊕B
1 0 1 A OR B
1 1 0 A AND B
1 1 1 −1

A0

A1

A2

A3

B0 S0

B1 ALU S1

B2 S2

B3 S3

F0

F1

F2

Problem 4.5 In graphics, if the colors representing two pixels are added the operation should
never overflow. Rather, if the sum exceeds the maximum, it saturates at the maximum value.
So, for example, in such an eight bit adder the result of 254 + 3 is 255 and not 1 as in con-
ventional adders. Similarly, when the colors are subtracted the result is never negative but
saturates at zero. Given two eight bit unsigned integers (i.e. from 0 to 255), design a saturating
adder/subtractor using ripple carry and give an estimate of its time delay. (Hint: you may need
the results of problem 1.6.)

Problem 4.6 The specific instructions serving multimedia applications in recent processors put
new requirements on arithmetic blocks. The new system in your company requires a dynamically
partitioned 64 bit adder. Such an adder can operate as a single 64 bit adder, two parallel 32 bit
adders, four parallel 16 bit adders, or eight parallel 8 bit adders.

Assume that an 8 bit saturating adder/subtractor such as the one described in problem 4.5 is
available as a building block for you. The control lines specifying the operation are labeled a64,
a32, a16, and a8 for the above mentioned cases respectively. The control lines are active high
and only one of them is selected at a time. Show how to connect the basic components with
any additional logic gates needed to form the partitioned adder. If you need, you can change
the design of the previous problem to suit the current one.

Problem 4.7 A friend of yours invented a new way to produce the carry signals in an adder
adding two numbers A =

∑n−1
i=0 ai2

i and B =
∑n−1
i=0 bi2

i. Instead of the traditional equation

ci+1 = gi + pici (4.2)

where gi = aibi and pi = ai⊕ bi the invention uses a multiplexer to produce ci+1 based on pi as

ci+1 = g′ip̄i + pici (4.3)

with g′i = bi and pi = ai ⊕ bi.

1. Verify that your friend’s claim produces the correct carries.

2. Derive a scheme similar to carry-lookahead based on your friend’s claim. Group each four
bits together and show a block diagram of how a 16 bit adder may use multi-levels of
lookahead.

3. Is your friend’s scheme better than the traditional scheme? Why or why not?
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Problem 4.8 Provide the Verilog code to simulate a regular 8 bit adder then extend it to the
saturating 8 bit adder/subtractor of problem 4.5 and test both exhaustively. You should make
sure that you test the input and output carry signals as well.

1. Integrate your code to simulate the full partitioned 64 bit adder (problem 4.6) assuming
that the carries will ripple between the 8 bit adder blocks. Make sure that you test for
correct functionality at all the different modes of operation: 1 × 64, 2 × 32, 4 × 16, and
8× 8.

How many test vectors are needed to test the whole adder exhaustively? If the verification
of each test vector takes only 1ns = 10−9 seconds, what is the time required for an
exhaustive test?

2. Instead of rippling the carries within and between the blocks, select a faster scheme from
what we studied to redesign the individual blocks and the full 64 bit adder. Provide your
design on paper and give an estimate of its gate delays as well as the number of gates
used?

Code your design and simulate it. Verify the time delay and gate count that you estimated
on paper. Does it match? If not, why?

Problem 4.9 Design a fast two-operands parallel adder where each operand is 16 BCD digits
(64 bits) using any of the techniques studied for binary adders. Give an estimate of its time
delay.

Problem 4.10 Code your design for the 16 digits BCD adder of problem 4.9 in Verilog and
simulate it. Verify the time delay and gate count that you estimated on paper. Does it match?
If not, why?
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Chapter 5

Go forth and multiply
(Incomplete chapter)

Usually in both integer and floating point calculations, the multiplication is the second most
frequent arithmetic operation after addition. It is quite important to understand it and to
perform it efficiently.

For integers, the multiplication is defined by

P = X +X + · · ·+X︸ ︷︷ ︸
Y times

where X is the multiplicand, Y is the multiplier, and P is the product. As we have discussed
in chapter 2, in floating point multiplication we multiply the significands as if they were fixed
point integers and add the exponents. So a floating point multiplication reduces to an integer
multiplication. For multiplication, it is easier to deal with integers in signed and magnitude
form. The magnitudes are multiplied as unsigned numbers and the sign of the product is
decided separately.

In this chapter, we will explore the different implementation possibilities given the constraints
on the time and resources (area and power) allowed for this operation. We will start by speaking
about unsigned integer multiplication and then show how to deal with signed integers (including
those in two’s complement notation). A discussion of the details of floating point multiplication
then follows.

5.1 Simple multiplication methods

Conceptually, the simplest method for multiplication is just to apply the definition.

Algorithm 5.1 Loop on Y
product = 0; while(Y>0){product = product + X; Y=Y-1; }

141
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This is almost the first method a child learns in order to multiply. A software implementation
of multiplication with this method uses the equivalent instructions to those in the algorithm. A
hardware implementation uses three registers: one to hold the values of X, the second holds the
current value of the product, and the third holds the current value of Y . Those registers are the
memory elements needed. The combinational elements needed are:

1. an adder to perform product = product+X,

2. a decrementing circuit to get Y=Y-1; this may reuse the previous adder if the area is
constrained or work in parallel with the adder,

3. a comparator to detect Y=0; a simple method is to group all the bits of Y in a tree
implementing their NOR function.

By analyzing this first algorithm, we notice that it is sequential in nature. The new values of
the product and Y depend on the previous values. The comparison with zero is the signal to
continue the loop or exit from it. If we use a separate circuit to decrement Y , then each cycle
in the loop has the time delay of an adder and a comparator. When both X and Y are n bits
long, their product is 2n bits long which means that the adder has a time delay of O(log 2n) or
larger depending on the type of adder used. The NOR tree of the comparator has a time delay
of O(log n). The loop continues as long as Y is not zero which means that the total number
of cycles is not known a priori. The total time for this multiplication hardware will depend
on the specific values of the inputs. If the following processing on the product is capable of
starting once the multiplication is completed then this variable latency of the multiplier will not
constitute a problem. Otherwise, the unit waiting for the product of the multiplier must wait
for the worst case condition which is when Y = 2n − 1. If we assume that the adder and the
NOR tree work in parallel such that their delays do not add, in the worst case the total time
delay is

t = O ((2n − 1)× (logr(2n))) .

This simple analysis indicates that this first algorithm

1. is slow and

2. has a variable latency depending on the values of the inputs.

On the positive side, this “loop on Y ” method is quite simple to implement and uses very little
hardware. The hardware requirements decrease if the adder is reused to decrement Y but this
doubles the number of cycles needed to finish the computation. If the original value of Y is
needed then another register must be used to hold it.

?=⇒ Exercise 5.1 A possible alternative method is to use

product = 0; count = 0; while(count<Y){product = product + X;
count=count+1; }

Will it work? Is this better than algorithm 5.1?

To improve the multiplication time, the add and shift method examines the digits of Y . The
add and shift algorithm is the basis for all of the subsequent implementations. It is a simplified
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version of the way one multiplies in the pencil and paper method. Humans multiply each digit of
the multiplier by the multiplicand and write down on paper (i.e. save for later use) the resulting
partial product . When we generate a new partial product we write it down shifted relative to the
previous partial product by one location to the left. At the end, we add all the partial products.

Example 5.1 Using the pencil and paper method, multiply 6 by 5 in their binary
representations
Solution: Obvisouly the answer is 30 but we should see how the detailed work is done.

Multiplicand 110 (6)
Multiplier ×101 × (5)

110 (6× 20)
Partial products 000 (0× 21)

110 (6× 22)
Final product 11110 (30)

In binary, the digit value is either 1 or 0 hence the multiplication by this digit yields a partial
product equal to the multiplicand or to a zero respectively.

?=⇒ Exercise 5.2 What kind of logic gates are needed to generate a partial
product (PP ) in binary multiplication?

As we will see in this chapter, once the digit values go beyond zero and one, the generation of
PPs is more difficult.

In the simplified add and shift version, once we generate one partial product we add it directly
to the sum of the previous partial products. To maintain the shift of one, we either shift the new
partial product by one location to the left or shift the previous sum by one location to the right.
Both possibilities are equivalent from a mathematical point of view. The one that is easier to
implement is favored. In both cases, the number of bits in the sum of partial products grows
as the algorithm proceeds. The register holding the value of that sum must be wide enough for
the final 2n bits result. At the start however, only n bits are needed to hold the sum value.
Without a “growing register” we must have wide register throughout the whole process.

Fig. 5.1 shows a clever idea where we actually provide such a “growing register” for the sum.
Each cycle we check the LSB of Y and then shift Y to the right to discard that bit and bring
the next one in its place. This process frees the MSB of Y which we can use to shift in the LSB
of the sum. Hence, a 2n bits wide register is used to initially store Y in its lower n bits and
zeros in the upper n bits. After checking the LSB of Y , we either add X or 0 to the upper half
of the register. We store the result of the addition to the upper half. Then, we shift the whole
register to the right bringing in the next significant bit of Y to be checked. In each cycle, the
barrier between the current sum of products (P ) and Y moves to the right by one location and
that is why we show it as a dotted line.

Algorithm 5.2 Add and shift

1. If the LSB of Y (y0) is 1 add X. Otherwise, add zero.

2. Shift both the product and Y to the right one bit.

3. Repeat for the n bits of Y .
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P Y
...

Adder

Mux

X

?

??
0

?

?

�

Figure 5.1: A simple implementation of the add and shift multiplication.

P Y
...

Adder

Mux

X
? ?

??

?

�

Figure 5.2: A variation of the add and shift multiplication.

In contrast to algorithm 5.1, the add and shift method of algorithm 5.2 has a fixed number
of cycles. Regardless of the value of Y , the multiplication has n steps. Fig. 5.1 contains a
multiplexer to choose the addition of X or a value of zero. As discussed in chapter 3, the time
delay of such a multiplexer from the select to the output is O (log4(n)). The adder used here is
only n bits wide since X is added to the most significant n bits of P . A conservative estimate
of the total time delay for algorithm 5.2 is

t = O (n× (logr(n) + log4 n)) .

Compared to algorithm 5.1, algorithm 5.2 has a shorter execution time and uses less area since
it has a smaller adder. Algorithm 5.2 seems to be a better choice overall. Indeed it is. However,
a careful analysis is always due whenever a designer finds a “better” solution.

?=⇒ Exercise 5.3 In algorithm 5.1, there was a need to use a comparator to
compare Y to zero. Fig. 5.1 does not contain a comparator. Do we still
need one?

The main advantage of the add and shift method is the execution of the multiplication in a
much shorter time and with a fixed number of cycles. Fig. 5.2 shows a variation of the add and
shift method. This variation exchanges the location of the multiplexer and the adder. With
this variation, it is perhaps clearer that when the LSB of Y is zero we are doing “nothing”. In
Fig. 5.1, when the LSB of Y is zero we add zero to P while in the variation of Fig. 5.2 we skip
the addition and just put P back into the register. Hence we get a slightly modified algorithm.
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Algorithm 5.3 (Add or skip) and shift

1. If the LSB of Y (y0) is 1 add X. Otherwise, skip the addition.

2. Shift both the product and Y to the right one bit.

3. Repeat for the n bits of Y .

?=⇒ Exercise 5.4 In algorithm 5.2 (Fig. 5.1), while doing “nothing” we are still
consuming power by using the adder and the multiplexer. Does the imple-
mentation of algorithm 5.3 as in Fig. 5.2 reduce this power consumption?

It is instructive to think about the effect of algorithm 5.3 on the total time of execution. On
some cycles, both the adder and the multiplexer are used while on others only the multiplexer.
Can we then have a “faster” cycle in those latter cases to improve the total time? The answer
lies in the kind of clocking scheme used in the design. If it is a synchronous design then the
clock period is fixed and all the cycles last the same time. In an asynchronous design where a
unit acts once it gets a signal from the preceding unit, faster cycles are a possibility. In such
an asynchronous design, the average time of execution is thus lower in the case of skipping the
addition. The worst case (when all the bits of Y are equal to 1) leads to the same total time
of execution for both the synchronous and asynchronous multiplier designs. This worst case is
what matters if the multiplier is used in a larger synchronous system. Hence, to really profit
from variable latency algorithms, the surrounding system must tolerate this variance. A designer
should have a look at the “bigger picture” before spending time in optimizing the design beyond
what is useful.

?=⇒ Exercise 5.5 If it proves to be fruitful to pursue such a design where some
cycles are faster, how do we calculate the average execution time?

It seems that if Y has more zeros, the multiplier skips more additions and might be made faster
and use less power. Booth (75) proposed an algorithm based on the fact that

a string of ones · · · 011· · ·110 · · ·
is equal to · · · 100· · ·01̄0 · · ·.

Hence, instead of adding repeatedly the multiplier adds only twice one for the number and the
other for its complement at the correctly shifted positions. The recoding is simple:

1. On a transition from 0 to 1, put 1̄ at the location of the 1.

2. On a transition from 1 to 0, put 1 instead of the 0.

3. Put zeros at all the remaining locations. (i.e. skip groups of zeros and groups of ones.)

It is possible in an implementation to actually perform this step of recoding followed by another
step using a modified add and shift algorithm. Otherwise, it is possible to combine both steps
as in the following algorithm. We start first by assuming that Y is an unsigned integer. The
case of a signed integer will be treated in the following discussion.
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Algorithm 5.4 Simple Booth for an unsigned Y

Initially, assume y−1 = 0.

If ((y0 = 1)&(y−1 = 0)) add the two’s complement of X.

else if ((y0 = 0)&(y−1 = 1)) add X.

else do not add anything (do nothing or skip).

Shift both the product and Y to the right one bit letting the
current value of y0 go into y−1.

Repeat for the n bits of Y .

If (y−1 = 1) add X.

The last step actually checks on the MSB of the original Y . If that MSB is 1 it is the end of a
string of ones and we must add X.

In the early days of computers when the availability of a hardware multiplier was rare, program-
mers used this simple Booth algorithm to implement the multiplication. Two points are worth
mentioning given this background:

• The Booth algorithm has a variable latency but, on average, its use reduces the time delay
and hence it was attractive to software implementations.

• The worst case is (01010101 · · · = 11̄11̄11̄11̄)⇒ O(n) delay. In this case, the original bits
have more zeros than the recoded bits. A modification to the algorithm that prevents the
recoding of ‘isolated’ occurances of a one or a zero avoids this worst case.

?=⇒ Exercise 5.6 Modify the simple Booth algorithm to prevent the recoding of
isolated ones or zeros as mentioned above.

In this chapter, the hardware implementations of parallel multipliers are described.

Figure 5.3a illustrates the concept for multiplication of two 8-bit operands, and Figure 5.3b
introduces a convenient dot representation of the same multiplication. In this chapter, we will
describe the three major categories of parallel multiplier implementation:

• Simultaneous generation of partial products and simultaneous reduction.

• Simultaneous generation of partial products and iterative reduction.

• Iterative arrays of cells.

5.2 Simultaneous Matrix Generation and Reduction

This scheme is made of two distinct steps. In the first step, the partial products are generated
simultaneously, and in the second step, the resultant matrix is reduced to the final product.
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X7 X6 X5 X4 X3 X2 X1 X0 ← multiplicand
Y 7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 ← multiplier
A7 A6 A5 A4 A3 A2 A1 A0 ← a partial product

B7 B6 B5 B4 B3 B2 B1 B0

C7 C6 C5 C4 C3 C2 C1 C0

D7 D6 D5 D4 D3 D2 D1 D0

E7 E6 E5 E4 E3 E2 E1 E0

F7 F6 F5 F4 F3 F2 F1 F0

G7 G6 G5 G4 G3 G2 G1 G0

H7 H6 H5 H4 H3 H2 H1 H0

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 ← final product
(a)

• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • • • • • • • • • •

(b)

Figure 5.3: (a) Multiplying two 8-bit operands results in eight partial products which are added
to form a 16-bit final product. (b) Dot representation of the same multiplication.
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Since the algorithms for each step are mostly independent of each other, we will describe them
separately.

5.2.1 Partial Products Generation: Booth’s Algorithm

The simplest way to generate partial products is to use AND gates as 1 × 1 multipliers. For
example, in Figure 5.3a:

A0 = Y0X0, A1 = Y0X1, B0 = Y1X0,

and so on. In this manner, an n-bit multiplier generates n partial products. However, it is
possible to use encoding techniques that reduce the number of partial products. The modified
Booth’s algorithm is such an encoding technique, which reduces the number of partial products
by half.

The original Booth’s algorithm (75) allows the multiplication operation to skip over any con-
tiguous string of all 1’s and all 0’s in the multiplier, rather than form a partial product for each
bit. Skipping a string of 0’s is straightforward, but in skipping over a string of 1’s the following
property is put to use: a string of 1’s can be evaluated by subtracting the weight of the rightmost
1 from the modulus. A string of n 1’s is the same as 1 followed by n 0’s less 1. For example,
the value of the binary string 11100 computes to 25 − 22 = 28 (i.e., 100, 000− 100).

A modified version of Booth’s algorithm is more commonly used. The difference between the
Booth’s and the modified Booth’s algorithm is as follows: the latter always generates n/2
independent partial products, whereas the former generates a varying (at most n/2+1) number
of partial products, depending on the bit pattern of the multiplier. Of course, parallel hardware
implementation lends itself only to the fixed independent number of partial products. The
modified multiplier encoding scheme encodes 2-bit groups and produces five partial products
from an 8-bit (unsigned numbers) multiplier, the fifth partial product being a consequence of
using two’s complement representation of the partial products. (Only four partial products are
generated if only two’s complement input representation is used, as the most significant input
bit represents the sign.)

Each multiplier is divided into substrings of 3 bits, with adjacent groups sharing a common bit.
Booth’s algorithm can be used with either unsigned or two’s complement numbers (the most
significant bit of which has a weight of −2n), and requires that the multiplier be padded with
a 0 to the right to form four complete groups of 3 bits each. To work with unsigned numbers,
the n-bit multiplier must also be padded with one or two zeros in the multipliers to the left.
Table 5.1, from Anderson (76), is the encoding table of the eight permutations of the three
multiplier bits.

In using Table 5.1, the multiplier is partitioned into 3-bit groups with one bit shared between
groups. If this shared bit is a 1, subtraction is indicated, since we prepare for a string of 1’s.
Consider the case of unsigned (i.e., positive) numbers; let X represent the multiplicand (all
bits) and Y = Yn−1, Yn−2, · · · , Y1, Y0 an integer multiplier—the binary point following Y0. (The
placement of the point is arbitrary, but all actions are taken with respect to it.) The lowest
order action is derived from multiplier bits Y1Y0.0—the LSB has been padded with a zero. Only
four actions are possible: Y1Y0.0 may be either 00.0, 01.0, 10.0, or 11.0. The first two cases
are straightforward; for 00.0, the partial product is 0; for 01.0, the partial product is +X. The
other two cases are perceived as the beginning of a string of 1’s. Thus, we subtract 2X (i.e., add
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Bit
21 20 2−1 Operation

Yi+1 Yi Yi−1

0 0 0 Add zero (no string) +0
0 0 1 Add multiplicand (end of string) +X
0 1 0 Add multiplicand (a string) +X
0 1 1 Add twice the multiplicand (end of string) +2X
1 0 0 Subtract twice the multiplicand (beginning of string) −2X
1 0 1 Subtract the multiplicand (−2X and +X) −X
1 1 0 Subtract the multiplicand (beginning of string) −X
1 1 1 Subtract zero (center of string) −0

Table 5.1: Encoding 2 multiplier bits by inspecting 3 bits, in the modified Booth’s algorithm.

−2X) for the case 10.0, and subtract X for the case 11.0. Higher order actions must recognize
that this subtraction has occurred. The next higher action is found from multiplier bits Y3Y2Y1

(remember, Y1 is the shared bit). Its action on the multiplicand has 4 times the significance of
Y1Y0.0. Thus, it uses the table as Y3Y2Y1, but resulting actions are shifted by 2 (multiplied by
4). Thus, suppose the multiplier was 0010.0; the first action (10.0) would detect the start of a
string of 1’s and subtract 2X, while the second action (00.1) would detect the end of a string
of 1’s and add X. But the second action has a scale or significance point 2 bits higher than the
first action (4 times more significant). Thus, 4 × X − 2X = 2X, the value of the multiplier,
(0010.0). This may seem to the reader to be a lot of work to simply find 2X, and, indeed, in
this case two actions were required rather than one. By inspection of the table, however, only
one action (addition or subtraction) is required for each two multiplier bits. Thus, use of the
algorithm insures that for an n-bit multiplier only n/2 actions will be required for any multiplier
bit pattern.

For the highest order action with an unsigned multiplier, the action must be derived with a
leading or padded zero. For an odd number of multiplier bits, the last action will be defined by
0Yn−1.Yn−2. For an even number of multiplier bits, n

2 + 1 actions are required, the last action
being defined by 00.Yn−1.

Multipliers in two’s complement form may be used directly in the algorithm. In this case,
the highest order action is determined by Yn−1Yn−2Yn−3 (no padding) for an even number
of multiplier bits, and Yn−1Yn−1.Yn−2, a sign extended group, for odd sized multipliers; e.g.,
suppose Y = −1. In two’s complement, Y = 1111 · · · 11. The lowest order action (11.0) is −X;
all other actions (11.1) are −0, producing the desired result (−X).

In implementing the actions, the 2X term is simply a 1-bit left shift of X. Thus, multiplicands
must be arranged to be gated directly with respect to a scale point or shifted one bit. Subtraction
is implemented by gating the complement of X (i.e., the 1’s complement) and then adding a
1 with respect to the scale point. In implementing this, the Yi+1 can be used as a subtractor
indicator that will be added to the LSB of the partial product. If bit Yi+1 = 0, no subtraction is
called for, and adding 0 changes nothing. On the other hand, if bit Yi+1 = 1, then subtraction
is called for and the proper two’s complement is performed by adding 1 to the LSB. Of course,
in the two’s complement, the sign bit must be extended to the full width of the final result, as
shown by the repetitive terms in Figure 5.4.

In Figure 5.4, if X and Y are 8-bit unsigned numbers, then A8–A0 are determined by the Y1Y0.0
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A9 A9 A9 A9 A9 A9 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

B9 B9 B9 B9 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Y1

C9 C9 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 Y3

D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Y5

E7 E6 E5 E4 E3 E2 E1 E0 Y7

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Figure 5.4: Generation of five partial products in 8 × 8 multiplication, using modified Booth’s
algorithm (only four partial products are generated if the representation is restricted to two’s
complement).

22 21 20 2−1

Yi+2 Yi+1 Yi Yi−1 Operation

0 0 0 0 +0
0 0 0 1 +X
0 0 1 0 +X
0 0 1 1 +2X
0 1 0 0 +2X
0 1 0 1 +3X
0 1 1 0 +3X
0 1 1 1 +4X
1 0 0 0 −4X
1 0 0 1 −3X
1 0 1 0 −3X
1 0 1 1 −2X
1 1 0 0 −2X
1 1 0 1 −X
1 1 1 0 −X
1 1 1 1 −0

Table 5.2: Extension of the modified Booth’s algorithm to 3-bit multiplier group encoding. This
requires generation of ±3X, which is not as trivial as the operations in the 2-bit multiplier
encoding. (Compare with Table 5.1.)

action on X. Since 2X is a possible action, A8 may be affected and A9 is the sign and extension.
If a ±X action is determined, then A8 is the sign and A8 = A9. The fifth action is determined by
00.Y7—always a positive, unshifted action (+X or +0). If X and Y are 8-bit two’s complement
numbers, then A8 = A9 are the sign and extension. Also, no fifth action (E7 − E0) is required.

The A9, B9, C9, D9 terms appear to significantly increase the hardware required for partial prod-
uct addition. There are 16 such terms. While the full addition of these terms results in the
correct product formations, S15 − S0, simpler implementations are possible. By recognizing
the A9, B9, · · · terms are sign identifiers and generating the sign logic separately, the additional
summing hardware for such terms can be eliminated.

The additional gate delay in implementing the modified Booth’s algorithm consists of four gates:
two gates for decoding the 3-bit multiplier and two gates for selecting X or 2X.

An extension of the modified Booth’s algorithm involves an encoding of three bits at a time
while examining four multiplier bits. This scheme would generate only n/3 partial products.
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However, the encoding truth table in Table 5.2 requires the generation of a three timesmultipli-
cand term, which is not as trivial as generating twice the multiplicand. Thus, most hardware
implementations use only the 2-bit encoding.

Suppose the multiplicand (X) is to be multiplied by an unsigned Y :

0011101011

That is, decimal 235.

We use modified Booth’s algorithm (Table 5.1) and assume that this multiplier is a binary
integer with point indicated by (.). Now the multiplier must be decomposed into overlapping
3-bit segments and actions determined for each segment. Note that the first segment has an
implied “0” to the right of the binary point. Thus, we can label each segment as follows:

(5)

(4)

(3)

(2)

(1)

0 0 1 1 1 0 1 0 1 1 .0

While segment (1) is referenced to the original binary point, segment (2) is four times more
significant. Thus, any segment (2) action on X (the multiplicand) must be scaled by a factor of
four. Similarly, segment (3) is four times more significant than 2, and 16 times more significant
than 1.

Now, by using the table and scaling as appropriate, we get the following actions:

Segment number Bits Action Scale factor Result

(1) 110 −X 1 −X
(2) 101 −X 4 −4X
(3) 101 −X 16 −16X
(4) 111 0 64 0
(5) 001 +X 256 +256X

Total action 235X

Note that the table of actions can be simplified for the first segment (Yi−1 always 0) and the
last segment (depending on whether there is an even or odd number of bits in the multiplier).

Also note that the actions specified in the table are independent of one another. Thus, the
five result actions in the example may be summed simultaneously using the carry-save addition
techniques discussed in the last chapter.

5.2.2 Using ROMs to Generate Partial Products

Another way to generate partial products is to use ROMs. For example, the 8×8 multiplication
of Figure 5.3 can be implemented using four 256 × 8 ROMs, where each ROM performs 4 × 4
multiplication, as shown in Figure 5.5.

In Figure 5.5, each 4-bit value of each element of the pair (YA, XA) (YB, XA) (YA, XB) and
(YB, XB) is concatenated to form an 8-bit address into the 256 entry ROM table. The entry
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| ← 8 bit operands → |
| ← 4 bits→ |

XB XA∗
YB YA

YA ·XA

YB ·XA

YA ·XB

YB ·XB

YB ·XA

YB ·XB YA ·XA

YA ·XB

| 16 bit products |-�

4 partial products


Rearranging results
in matrix height
of three.



Figure 5.5: Implementation of 8× 8 multiplication using four 256× 8 ROMs, where each ROM
performs 4× 4 multiplication.

Table 5.3: Summary of maximum height of the partial products matrix for the various partial
generation schemes where n is the multiple size.

max Height of the Matrix
General Number of Bits

Scheme Formula 8 16 24 32 40 48 56 64

1× 1 multiplier (AND gate) n 8 16 24 32 40 48 56 64

4× 4 multiplier (ROM) (n/2)− 1 3 7 11 15 19 23 27 31

8× 8 multiplier (ROM) (n/4)− 1 1 3 4 7 9 11 13 15

Modified Booth’s algorithm (n/2) 4 8 12 16 20 24 28 32

contains the corresponding 8-bit product. Thus, four tables are required to simultaneously form
the products: YA ·XA, YB ·XA, YA ·XB, and YB ·XB. Note that the YA ·XA and the YB ·XB

terms have disjoint significance; thus, only three terms must be added to form the product.
The number of rearranged partial products that must be summed is referred to as the matrix
height—the number of initial inputs to the CSA tree.

A generalization of the ROM scheme is shown in Figure 5.6 (73) for various multiplier arrays of
up to 64× 64. In the latter case, 256 partial products are generated. But upon rearranging, the
maximum column height of the matrix is 31. Table 5.3 summarizes the partial products matrix.

These partial products can be viewed as adjacent columns of height h. Now we are ready to
discuss the implementations of column reductions.
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64× 64 multiplier array
�	

Each rectangle represents
an 8-bit product

32× 32
�	

16× 16
�	

8× 8
�	 4× 4
�	

Figure 5.6: Using ROMs for various multiplier arrays for up to 64 × 64 multiplication. Each
ROM is a 4×4 multiplier with 8-bit product. Each rectangle represents the 8-bit partial product
(h = 31).
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5.2.3 Partial Products Reduction

As mentioned in the last chapter, the common approach in all of the summand reduction tech-
niques is to reduce the n partial products to two partial products. A carry look ahead is then
used to add these two products. One of the first reduction implementations was the Wallace tree
(77), where carry save adders are used to reduce 3 bits of column height to 2 bits (Figure 5.7).
In general, the number of the required carry save adder levels (L) in a Wallace tree to reduce
height h to 2 is:

L
.=
⌈

log3/2

(
h

2

)⌉
=
⌈

log1.5

(
h

2

)⌉
,

where h is the number of operands (actions) to be summed and L is the number of CSA stages
of delay required to produce the pair of column operands. For 8× 8 multiplication using 1× 1
multiplier generation, h = 8 and four levels of carry-save-adders are required, as illustrated in
Figure 5.8. Following we show the number of levels versus various column heights:

Column Height (h) Number of Levels (L)
3 1
4 2

4 < n ≤ 6 3
6 < n ≤ 9 4
9 < n ≤ 13 5

13 < n ≤ 19 6
19 < n ≤ 28 7
28 < n ≤ 42 8
42 < n ≤ 63 9

Dadda (78) coined the term “parallel (n,m) counter.” This counter is a combinatorial network
with m outputs and n(≤ 2m − 1) inputs. The m outputs represent a binary number encoding
the number of ones present at the inputs. The carry save adder in the preceding Wallace tree is
a (3, 2) counter.

This class of counters has been extended in an excellent article (1) that shows the Wallace tree
and the Dadda scheme to be special cases. The generalized counters take several successively
weighted input columns and produce their weighted sum. Counters of this type are denoted as:

(CßR−1, CßR−2, · · · , C0, d)

counters, where R is the number of input columns, Ci is the number of input bits in the column
of weight 2i, and d is the number of bits in the output word. The suggested implementation
for such counters is a ROM. For example, a (5, 5, 4) counter can be programmed in 1K × 4
ROM, where the ten address lines are treated as two adjacent columns of 5 bits each. Note
that the maximum sum of the two columns is 15, which requires exactly 4 bits for its binary
representation. Figures 5.9 and 5.10 illustrate the ROM implementation of the (5, 5, 4) counter
and show several generalized counters. The use of the (5, 5, 4) counter to reduce the partial
products in a 12 × 12 multiplication is shown in Figure 5.11, where the partial products are
generated by 4× 4 multipliers.

Parallel compressors, which are a subclass of parallel counters, have been introduced by Gajski
(79). These compressors are distinctively characterized by the set of inputs and outputs that



5.2. SIMULTANEOUS MATRIX GENERATION AND REDUCTION 155

m bits of multiplicand

Top view
of tree

Product

Slice of tree 
  for middle bit

of tree             

n bits

n multiples

Entries
from
tree

2 bits

2 m bits



product

CPA

Figure 5.7: Wallace tree.
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First Level
of CSA

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · ·
· · · · · · · · ·
· · · · · · ·
· · · · ·
· · ·
·

Second Level
of CSA

· · · · · · · · · · · · · · ·
· · · · · · · · · · ·

· · · · · · · · ·
· · · · ·

· · ·
·

·
·

·
·

Third Level
of CSA

· · · · · · · · · · · · · · ·
· · · · · · · · ·

· · · · ·
· · · ·

· ·
· ·

Fourth Level
of CSA

· · · · · · · · · · · · · · ·
· · · · · · · · ·
· · · · · · ·

· ·

Last Level:
Carry-Look-Ahead· · · · · · · · · · · · · · ·

· · · · · · · · · · ·

Figure 5.8: Wallace tree reduction of 8× 8 multiplication, using carry save adders (CSA).
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(a) Adding two columns, each 5 bits in height,
gives the maximum result of 15 which is repre-
sentable by 4 bits (the ROM outputs or counter).

8 4 2 1

·
·
·
·
·

·
·
·
·
·

· · · ·
(5,5,4)

(b) Four (5,5,4)s are used to reduce the five
operands (each 8 bits wide) to two operands,
which can be added using carry look ahead.
Note that, regardless of the operand width, five
operands are always reduced to no more than two
operands.

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

· · · · · · · ·
· · · · · · · ·

Figure 5.9: The (5, 5, 4) reduces the five input operands to one operand.

serves as an interconnection between different packages in a one-dimensional array of compres-
sors. These compressors are said to be more efficient than parallel counters. For more details
on this interesting approach, the reader is referred to Gajski’s article (79).

5.3 Iteration and Partial Products Reduction

5.3.1 A Tale of Three Trees

The Wallace tree can be coupled with iterative techniques to provide cost effective implementa-
tions. A basic requirement for such implementation is a good latch to store intermediate results.
In this case “good” means that it does not add additional delay to the computation. As we shall
see in more detail later, the Earle latch (Figure 5.12), accomplishes this by simply providing a
feed–back path from the output of an existing canonic circuit pair to an additional input.

Thus, an existing path delay is not increased (but fan–in requirements are increased by one). In
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·
·
· · ·
· · ·

· · · ·
· · · ·
· · · ·

· · · · · · · · ·
(3, 2) (7, 3) (5, 5, 4)

· · · · ·
· · · · · · · ·
· · · · · · · ·

· · · · · · · · · · ·
(2, 2, 2, 3, 5) (3, 3, 3, 3, 6)

Figure 5.10: Some generalized counters from Stenzel (1).

a given logic path, an existing “and–or” pair is replaced by the latch which also performs the
“and–or” function.

Use of this latch can significantly reduce implementation costs if appropriate care is taken in
design (see Chapter 6).

Consider the operation of an n–bit multiplier on an m–bit multiplicand; that is, we reduce n
partial products, each of m bits, to two partial products, then propagate the carries to form a
single (product) result. Trees of size L actually have some bits of their partial product tree for
which L CSA stages are required. Note that for both low–order and high–order product bits the
tree size is less.

Now in the case of the simple Wallace tree the time required for multiplication is:

τ ≤ L · 2 + CPA(m+ n bits),

where τ is in unit gate delays. Each CSA stage has 2 serial gates (an AND–OR in both sum and
carry). The CPA (m+n) term represents the number of unit gate delays for a carry look ahead
structure with operand size m+n bits. Actually since the tree height at the less significant bits
is smaller than the middle bits, these positions arrive early to the CPA. Thus, the CPA term is
somewhat conservative.

The full Wallace tree is “expensive” and, perhaps more important, is topologically difficult to
implement. That is, large trees are difficult to map onto planes (printed wire boards) since
each CSA communicates with its own slice, transmits carries to the higher order slice, and
receives carries from a lower order. This “solid” topology creates both I/0 pin difficulty (if the
implementation “spills” over a single board) and wire length (routing) problems.

Iterating on smaller trees has been proposed (76) as a solution. Instead of entering n multiples
of the multiplicand we use an n/I tree and perform I iterations on this smaller tree.

Consider three types of tree iterations:
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X2 X1 X0

Y2 Y1 Y0

Y 0 ·X2 Y 0 ·X0

Y 1 ·X2 Y 0 ·X1

Y 2 ·X1 Y 1 ·X0

Y 2 ·X2 Y 1 ·X1

Y 2 ·X0
(a)

• • • • • • • •
• • • • • • • •

• • • • • • • • • • • • • • • • first
• • • • • • • • • • • • • • • • level

• • • • • • • • • • • • • • • • • • • • • • • •

(b)

· · · · · · · · · · · · · · · · CPA
· · · · · · · · · · · · · · · · · · · · · · · ·

(c)

Figure 5.11: 12× 12 bit partial reduction using (5, 5, 4) counters. The X0, Y 0, X1, etc., terms
each represent four bits of the argument. Thus, the product X0Y 0 is an 8-bit summand.
(a) Partial products are generated by 4× 4 multipliers (1).
(b) Eight (5, 5, 4)s are used to compress the column height from five to two.
(c) A CPA adder is used to add the last two operands. The output of each counter in (b)
produces a 4-bit result: 2 bits of the same significance, and 2 of higher. These are combined in
(c).
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Figure 5.12: Earle latch.
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Figure 5.13: Slice of a simple iteration tree showing one product bit.

1. Simple iteration: in this case, the n/I multiples of the m–bit multiplicand are reduced and
added to form a single partial product. This is latched and fed back into the top of the
tree for assimilation on the next iteration.

The multiplication time is now the number of iterations, I, times the sum of the delay in the
CSA tree height (two delays per CSA) and the CPA delay. The CSA tree is approximately
log3/2 of the number of inputs dnI + 1e divided by 2, since the tree is reduced to two
outputs, not one. The maximum size of the operands entering the CPA on any iteration
is m+ dnI + 1e;

τ ≈ I
(

2
⌈
log3/2

⌈n
I

+ 1
⌉
/2
⌉

+ CPA
(
m+

⌈n
I

+ 1
⌉))

unit gate delays.

2. Iterate on tree only: the above scheme can be improved by avoiding the use of the CPA

until the partial products are reduced to two. This requires that the (shifted) two partial
results be fed back into the tree before entering the CPA, (Figure 5.14). The “shifting”
is required since the new n

I input multiples are at least (could be more, depending on
multiplier encoding) n

I bits more significant than the previous iteration. Thus, each pair
of reduced results is returned to the top of the tree and shifted to the correct significance.
Therefore, we require only one CPA and I iterations on the CSA tree.

The time for multiplication is now:

τ ≈ I
(

2
⌈
log3/2

⌈n
I

+ 2
⌉
/2
⌉)

+ CPA (m+ n)
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Figure 5.14: Slice of tree iteration showing one product bit.

3. Iterate on lowest level of tree: In this case the partial products are assimilated by returning
them to the lowest level of the tree. When they are assimilated to two partial products
again a single CPA is used, (Figure 5.15). Thus:

As the Earle latch requires (approximately) a minimum of four gate delays for a pipeline
stage, returning the CSA output one level back into the tree provides an optimum imple-
mentation (Chapter 6 provides more detailed discussion). The tree height is increased;
but only the initial set of multiples sees the delay of the total tree. Subsequent sets are
introduced at intervals of four gate delays, (Figure 5.15). Thus, the time for multiplication
is now:

τ ≈ 2
(⌈

log 3
2

⌈n
I

⌉
/2
⌉)

+ I · 4 + CPA(2m)

Note that while the cost of the tree has been significantly reduced, only the I · 4 term differs
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Figure 5.15: Slice of low level tree iteration.
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Figure 5.16: Iteration.

from the full Wallace tree time. So long as I is chosen so that this term does not dominate the
total time, attractive implementations are possible using a tree of size L′ instead of L levels.

In all of these approaches, we are reducing the height of the tree by inputing significantly
fewer terms, about n

I instead of n. These fewer input terms mean a much smaller tree—fewer
components (cost) and quicker generation of a partial result, but now I iterations are needed for
a complete result instead of a single pass.

5.4 Iterative Array of Cells

The matrix generation/reduction scheme, (Wallace tree), is the fastest way to perform parallel
multiplication; however, it also requires the most hardware. The iterative array of cells requires
less hardware but it is slower. The hardware required in the iterative approach can be calculated
from the following formula:

number of building blocks =
⌈

N×M
n×m

⌉
where N, M are the number of bits in the final multiplication, and n, m are the number of bits
in each building block. For example, nine 4 × 4 multipliers are required to perform 12 × 12
multiplication in the iterative approach (since (12 × 12)/(4 × 4) = 9). By contrast, using the
matrix generation technique to do 12 × 12 multiplication requires 13 adders in addition to the
nine 4× 4 multipliers (see Figure 5.11). In general, the iterative array of cells is more attractive
for shorter operand lengths since their delay increases linearly with operand length, whereas the
delay of the matrix–generation approach increases with the log of the operand length.

The simplest way to construct an iterative array of cells is to use 1–bit cells, which are simply
full adders. Figure 5.17 depicts the construction of a 5 × 5 unsigned multiplication from such
cells.

In the above equation, we define the arithmetic value (weight) of a logical zero state as µ and
a logical one state as ν; then P (µ, ν) is a variable with states µ and ν. Thus, a conventional
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carry-save adder with unsigned inputs performs X0+Y0+C0 = C1+S0, or (0, 1)+(0, 1)+(0, 1) =
(0, 2) + (0, 1).

In two’s complement, the most significant bit of the arguments is the sign bit, thus for 5× 5 bit
two’s complement multiplication of Y4Y3Y2Y1Y0 by X4X3X2X1X0, Y4 and X4 indicate the sign.
Thus, the terms

X0Y4, X1Y4, . . . , X3Y4

and
X4Y3, X44Y2, X4Y1, X4Y0

have range (0,−1).

X0Y4 + 0 +X1Y3 is (0,−1) + 0 + (0, 1) =

This can be implemented by type II′: (0, 1) + (0,−1) + (0,−1) = (0,−2) + (0, 1)

The negative carry out and the negative XiY4 requires type II′ circuits along the right diagonal,
until negative input X4Y3 combines with X3Y4 defining a type I′ situation wherein all inputs
are zero or negative.

Now the type II cell has equations:

C1 = A0B0C0 + Ā0B0C0 + ĀB̄0C0 + ĀB0C̄0

S0 = A0B0C0 + Ā0B̄0C0 + Ā0B0C̄0 +A0B̄0C̄0

(recall that S0 = (0,−1)

Figure 5.17 can be generalized by creating a 2 bit adder cell (Figure 5.20) akin to the 1-bit cell
of Figure 5.18. For unsigned numbers, an array of circuits of the type called L101:

A1 +B1 +A0 +B0 + C0 = C2 + S1 + S0

(0, 2) + (0, 2) + (0, 1) + (0, 1) + (0, 1) = (0, 4) + (0, 2) + (0, 1)

is required.

In (Figure 5.17), if we let

A1 = X0Y2

B1 = X1Y1

A0 = X0Y1

B0 = X1Y0

C0 = 0

we capture the upper rightmost 2-bit positions with one 2-bit cell (Figure 5.20). Continuing
for the 5× 5 unsigned multiplication we need one half the number of cells (plus 1) as shown in
Figure 5.17. We can again extend this to two’s complement arithmetic.

To perform signed (two’s complement) multiplication the scheme is slightly more complex (80).
Pezaris illustrates his scheme by building 5× 5 multipliers from two types of circuits, using the
following 1–bit adder cell (Figure 5.18.):
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Figure 5.17: 5× 5 unsigned multiplication.

Figure 5.18: 1–bit adder cell.
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Figure 5.19: 5× 5 two’s complement multiplication [PEZ 70].

A0 B0 C0 C1 S0

TYPE I : (0, 1) + (0, 1) + (0, 1) = (0, 2) + (0, 1)
TYPE II : (0,−1) + (0, 1) + (0, 1) = (0, 2) + (0,−1)
TYPE II′ : (0, 1) + (0,−1) + (0,−1) = (0,−2) + (0, 1)
TYPE I′ : (0,−1) + (0,−1) + (0,−1) = (0,−2) + (0,−1)

Type I is the conventional carry save adder, and it is the only type used in Figure 5.17 for
the unsigned multiplication. Types I and I′ correspond to identical truth tables (because if
x+y+z = u+v, then −x−y−z = −u−v) and, therefore, to identical circuits. Similarly, types
II and II′ correspond to identical circuits. Figure 5.19 shows the entire 5× 5 multiplication.

Pezaris extends the 1–bit adder cell to a 2–bit adder cell, as shown below:

Implementation of this method with 2–bit adders requires three types of circuits, (the L101,
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Figure 5.20: 2–bit adder cell.

L102, L103). The arithmetic operations performed by these three types are given below:

A1 B1 A0 B0 C0 C2 S1 S0

L101 : (0, 2) + (0, 2) + (0, 1) + (0, 1) + (0, 1) = (0, 4) + (0, 2) + (0, 1)
L102 : (0, 2) + (0,−2) + (0, 1) + (0, 1) + (0, 1) = (0, 4) + (0,−2) + (0, 1)
L103 : (0, 2) + (0,−2) + (0, 1) + (0,−1) + (0, 1) = (0, 4) + (0,−2) + (0, 1)

Iterative multipliers perform the operation

S = X ·Y + K,

where K is a constant to be added to the product (whereas the matrix generation schemes
perform only S = X · Y). The device uses the (3–bit) modified Booth’s algorithm to halve the
number of partial products generated. Figure 5.21 shows the block diagram of the iterative
cell. The X−1 input is needed in expanding horizontally since the Booth encoder may call for
2X, which is implemented by a left shift. The Y−1 is used as the overlap bit during multiplier
encoding. Note that outputs S4 and S5 are needed only on the most significant portion of each
partial product (these 2 bits are used for sign correction). Figure 5.22 shows the implementation
of a 12 × 12 two’s complement multiplier. This scheme can be extended to larger cells. For
example, in Figure 5.22, the dotted line encloses an 8× 8 iterative cell.

5.5 Detailed Design of Large Multipliers

5.5.1 Design Details of a 64× 64 Multiplier

In this section, we describe the design of a 64×64 multiplier using the technique of simultaneous
generation of partial products. The design uses standard design macros. Four types of macros
are needed to implement the three steps of a parallel multiplier.

1. Simultaneous generation of partial products—using an 8× 8 multiplier macro.
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Figure 5.21: Block diagram of 2× 4 iterative multiplier.

2. Reduction of the partial products to two operands—(5,5,4) counter.

3. Adding the two operands—adders with carry look ahead.

Figure 5.23 depicts the generation of the partial products in a 64 × 64 multiplication, using
8× 8 multipliers. Each of the two 64-bit operands is made of 8 bytes (byte = 8 bits), which are
numbered 0, 1, 2, . . . , 7 from the least to the most significant byte. Thus, 64-bit multiplication
involves multiplying each byte of the multiplicand (X) by all 8 bytes of the multiplier (Y ).
For example, in Figure 5.24, the eight rectangles marked with a dot are those generated from
multiplying byte 0 of Y by each of the 8 bytes of X. Note that the product “01” is shifted 8
bits with respect to product “00,” as is “02” with respect to “01,” and so on. These 8-bit shifts
are due to the shifted position of each byte within the 64-bit operand. Also, note that for each
Xi · Yj(i 6= j) byte multiplication, there is a corresponding product XjYi with the same weight.
Thus, product “01” corresponds to product “10” and product “12” corresponds to product “21.”
As before, for N ×M multiplication, the number of n×m multipliers required is:

N ×M
n×m,

and in our specific case:

Number of multipliers =
64× 64
8× 8

= 64 multipliers.

The next step is to reduce the partial products to two operands. As shown in Figure 5.23, a
(5, 5, 4) can reduce two columns, each 5 bits high, to two operands. The matrix of the partial
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Figure 5.22: 12× 12 two’s complement multiplication A = X ·Y + K. Adapted from (2).
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X7 X6 X5 X4 X3 X2 X1 X0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Y0 ·X0
Y0 ·X1

Y0 ·X2
Y0 ·X3 Y1 ·X0

Y0 ·X4 Y1 ·X1
Y0 ·X5 Y1 ·X2

Y0 ·X6 Y1 ·X3
Y0 ·X7 Y1 ·X4

Y1 ·X5
Y1 ·X6

Y1 ·X7

Figure 5.23: A 64× 64 multiplier using 8× 8 multipliers. Only 16 of the 64 partial products are
shown. Each 8× 8 multiplier produces a 16–bit result.

77 66 55 44 33 22 11 00

67 56 45 34 23 12 01

76 65 54 43 32 21 10

57 46 35 24 13 02

75 64 53 42 31 20

47 36 25 14 03

74 63 52 41 30

37 26 15 04

73 62 51 40

27 16 05

72 61 50

17 06

71 60

07

70
•

•

•

•

•

•

•

•

Figure 5.24: Partial products generation of 64× 64 multiplication using 8× 8 multipliers. Each
rectangle represents the 16-bit product of each 8 × 8 multiplier. These partial products are
later reduced to two operands, which are then added by a CPA adder. Each box entry above
corresponds to a partial product index pair; e.g., the 70 corresponds to the term Y 7 ·X0.
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1 Counter

Figure 5.25: Using (5,5,4)s to reduce various column heights to 2 bits high. The 15→ 2 shows
the summation as required in Figure 5.23 (height 15). Each other height required in Figure 5.24
is shown in 5,5,4 implementation.
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products in Figure 5.24 can be viewed as eight groups of 16 columns each. The height of the eight
groups is equal to 1, 3, 5, 7, 9, 11, 13 and 15. Figure 5.25 illustrates with a dot representation
the use of (5,5,4)s to reduce the various column heights to 2 bits high. We now can compute the
total number of counters required to reduce the partial product matrix of a 64×64 multiplication
to two operands:

Number Height Number of Number of
of of Counters per Counters for all

Columns Columns Two Columns Columns of Same Height
16 15 5 8× 5 = 40
16 13 4 8× 4 = 32
16 11 3 8× 3 = 24
16 9 3 8× 3 = 24
16 7 2 8× 2 = 16
16 5 1 8× 1 = 8
16 3 1 8× 1 = 8
16 1 — —

Total number of counters 152

The last step in the 64 × 64 multiplication is to add the two operands using 4-bit adders and
carry look ahead units, as described earlier. Since the double length product is 128 bits long, a
128-bit carry look ahead (CLA) adder is used.

5.5.2 Design Details of a 56× 56 Single Length Multiplier

The last section described a 64× 64 multiplier with double length precision. In this section, we
illustrate the implementation of single length multiplication and the hardware reduction associ-
ated with it, as contrasted with double length multiplication. We select 56× 56 multiplication
because 56 bits is a commonly used mantissa length in long floating point formats.

A single length multiplier is used in fractional multiplication, where the precision of the product
is equal to that of each of the operands. For example, in implementing the mantissa multiplier
in a hardware floating point processor, input operands and the output product have the range
and the precision of:

0.5 ≤ mantissa range ≤ 1− 2−n,

mantissa precision = 2−n,

where n is the number of bits in each operand.

Figure 5.27 shows the partial products generated by using 8× 8 multipliers. The double length
product is made of 49 multipliers, since

Number of multipliers =
56× 56
8× 8

= 49.

However, for single precision, a substantial saving in the number of multipliers can be realized
by “chopping” away all the multipliers to the right of the 64 MSBs (shaded area); but we need
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First level
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Input to second level
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Input to second level

Figure 5.26: Using (5,5,4) counters to implement the reduction of the partial products of height
15, showing only the first level and its output.
This maximum height occurs when partial products 70 (Y 7 ·X0) through 44 (or 33) are to be
summed (Figure 5.24). For example, the top 5,5,4 counter above would have inputs from 70, 07,
71, 17, 61, the middle counter inputs from 16, 62, 26, 52, 25, and the lowest from 53, 35, 43, 34,
and 44. The three counters above provide three 4-bit outputs (2 bits of the same significance, 2
of higher). Thus, six outputs must be summed in the second level: three from the three shown
counters, and three from the three lower order counters.
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56 45 34 23 12 01

65 54 43 32 21 10

46 35 24 13 02

64 53 42 31 20

36 25 14 03

63 52 41 30

26 15 04

62 51 40

16 05

61 50

06

60

Figure 5.27: Partial products generation in a 56×56 multiplication, using 8×8 multipliers. The
shaded multipliers can be removed when a single length product (56 MSBs) is required.

to make sure that this chopping does not affect the precision of the 56 MSBs. Assume a worst
case contribution from the “chopped” area; that is, all ones. The MSB of the discarded part has
the weight of 2−65, and the column height at this bit position is 11. Thus, the first few terms
of the “chopped” area are:

Max error = 11 ∗ (2−65 + 2−66 + 2−67 + . . .)
But: 11 < 24

Therefore: Max error < (2−61 + 2−62 + 2−63 + . . .)

From the last equation, it is obvious that “chopping” right of the 64 MSBs will give us 60 correct
MSBs, which is more than enough to handle the required 56 bits plus the 2 guard bits.

Now we can compute the hardware savings of single length multiplication. From Figure 5.27, we
count 15 fully shaded multipliers. We cannot remove the half shaded multipliers, since their most
significant half is needed for the 58-bit precision. Thus, a total of 34 instead of 49 multipliers is
used for the partial product generation.
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Using the technique outlined previously, the number of counters needed for column reduction is
easily computed for double and single length.

Number Height Number of Number of Counters
of of Counters per for All Columns

Columns Columns Two Columns of Same Height
Double Single Double Single
Length Length Length Length

16 16 13 4 32 32
16 8 11 3 24 12
16 8 9 3 24 12
16 8 7 2 16 8
16 8 5 1 8 4
16 8 3 1 8 4
16 8 1 — — —

Total Number of Counters 112 72

Finally, adding the resulting two operands in the double length case (112 bits) requires a carry
look ahead (CLA) adder. For the single length case, the addition of the two 64 bit operands is
accomplished by a 64-bit CLA adder. There is a 34% hardware savings using the single length
multiplication. However, there is no speed improvement to a first approximation.
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5.6 Problems

Problem 5.1 Design a modified Booth’s encoder for a 4-bit multiplier.

Problem 5.2 Find the delay of the encoder in problem 5.1.

Problem 5.3 Construct an action table for modified Booth’s algorithm (2-bit multiplier en-
coded) for sign and magnitude numbers (be careful about the sign bit).

Problem 5.4 Design a modified Booth’s encoder for sign and magnitude numbers (4-bit
multiplier encoded).

Problem 5.5 Construct the middle bit section of the CSA tree for 48× 48 multiplication for:

1. Simple iteration.

2. Iterate on tree.

3. Iterate on lowest level of tree.

Problem 5.6 Compute the number of CSA’s required for:

1. 1-bit section.

2. Total tree.

Problem 5.7 Derive an improved delay formula (taking into account the skewed significance
of the partial products) for:

1. Full Wallace tree.

2. Simple iteration.

3. Iterate on tree.

4. Iterate on lowest level of tree.

Problem 5.8 Suppose 256 × 8 ROMs are used to implement 12 bit × 12 bit multiplication.
Find the partial products, the rearranged product matrix, and the delay required to form a 24
bit product.

Problem 5.9 If (5, 5, 4) counters are used for partial product reduction, compute the number
of counter levels required for column heights of 8, 16, 32, and 64 bits. How many such counters
are required for each height?

Problem 5.10 Suppose (5, 5, 4) counters are being used to implement an iterative multipli-
cation with a column height of 32 bits. Iteration on the tree only is to be used. Compare the
tree delay and number of counters required for one, two, and four iterations.

Problem 5.11 Refer to Figure 5.4. Develop the logic on the A9, B9, C9, and D9 terms to
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eliminate the required summing of these terms to form the required product. Assume X and Y
are 8-bit unsigned integers.

Problem 5.12 Refer to Table 5.1. Show that this table is valid for the two’s complement form
of the multiplier.

Problem 5.13 Implement a (5, 5, 4) counter using only CSAs. Use a minimum number of
levels and then a minimum number of CSAs.

1. Show in dot representation each CSA in each level.

2. Your implementation has how many gate delays?

Problem 5.14 We wish to build a 16 × 16 bit multiplier. Simple AND gates are used to
generate the partial products (tmax = 20 ps, tmin = 10 ps).

1. Determine the height of the partial product tree.

2. How many AND gates are required?

3. How many levels of (5,5,4) counters are required? Estimate the total number of counters.

4. If the counters have an access time of Pmax = 30 ps, Pmin = 22 ps, determine the latency
of the multiplier (before CPA).

5. An alternative design for the multiplier would use iteration of the partial product tree. If
only one level of (5,5,4) counters is used, how many iterations are required?

6. How many gates are needed for PP generation and how many ROM’s for PP reduction?

Problem 5.15 It has been suggested that 1K × 8b ROMs could be used as counters to realize
a 32-bit CPA (Cin = 0). Design such a unit. Show each counter and its DOT configuration or
(CR, . . . , d) designation. Clearly show how its input and output relate to other counters.

Minimize (with priority):

1. The number of ROM delays.

2. The total number of ROMs.

3. The number of ROM types.

What are the number of ROM delays, the total number of ROMs, and the number of ROM
types? Show a complete design.

Problem 5.16 Implement a (7, 3) counter using only CSAs. Use a minimum number of levels
and then a minimum number of CSAs.

1. Show in dot representation each CSA in each level.
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2. Repeat for a (5,5,4) counter.

Problem 5.17 We want to perform 64× 64 bit multiplicand using 8× 8 PP generators. What
is the PP tree height?

Suppose the tree reduction is to be done by (7,3) counters. Assume a three input CPA is
available. Show the counter reduction levels for the max column height (h). How many (7,3)
counter levels are required?

Suppose we now wish to iterate on the tree using one level of (7,3) counters.

Suppose PP generation takes Pmax = 400 ps, (7,3) counter takes Pmax = 200 ps, and three input
CPA takes Pmax = 300 ns.

How would you arrange to assimilate (reduce) the PP’s and find the product? Show the number
of PP reduced for each iteration.

The total time for multiplication is how many nsec?

Problem 5.18 Design a circuit to compute the sum of the number of ones in a 128b word, using
only 64K × 8b ROM’s (no CPA’s). You should minimize the number of levels, then the number
of parts, then the number of types of ROM configurations (contents). Use dot notation.

Problem 5.19 A method to perform a DRC multiply (1’s complement) has been proposed.
It uses an unsigned 2’s complement multiplier which takes two n-bit operands and produces a
2n-bit result, and a CLA adder which adds the high n-bits to the low n-bits of the multiplier
output. Don’t worry about checking for overflow. Assume the DRC result will fit in n bits.

Either prove that this will always produce the correct DRC result, or give an example where it
will fail.

Problem 5.20 In digital signal processing, there is often a requirement to multiply by specific
constants. One simple scheme is to use sub-multiples of the form 2k or 2k ± 1 to achieve the
required operation. As an example, 45X is calculated as 5X×9 = (22 +1)X× (23 +1). First, X
is shifted by two bit locations (a simple wiring no gates needed) and added to itself. Then the
result is shifted by three bit locations (again no gates) and added to itself. The total hardware
needed is two adders.

X

??

�SL 2
4X

Adder
5X

??

�SL 3
40X

Adder
?

45X

Multiplication by 45. Shifting is connecting the wires to the required locations.

Assume that in a specific design you need to have four products: P1 = 9X, P2 = 13X, P3 = 18X,
P4 = 21X. Show how do you divide the different products. How many adders do you need if each
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Figure 5.28: Building blocks for problem 5.21

product is done separately? A friend shared the common subexpressions between the required
products and claims to complete the four products using only five adders. As a challenge, you
try to share more hardware between the units in an attempt to use only four adders, can you?

Problem 5.21 The boxes in Fig. 5.28(a) are multiplexers implemented using CMOS pass
gates, the triangles are buffers to keep the signal strength and the the circles at the inputs of
some multiplexers are inverters. The inputs are i1, i2, i3, i4, c′in and c′′in while the outputs are
c′out, c

′′
out, s1, and s2.

1. Please indicate the mathematical relation between the inputs and the outputs as imple-
mented by this circuit. Hint: the relation is an equation on one line that has the inputs
on the right hand side and the outputs on the left hand side. Only arithmetic (not logical)
operators and possibly a multiplication by a constant exist in the relation.

2. If the box of Fig. 5.28(b) is implemented by the circuit of Fig. 5.28(a), now indicate the
new mathematical relation.

3. What do you get if you connect an array of the circuit of Fig. 5.28(b) using vertical
connections between cin and cout? What do you get if you connect a tree of those arrays
using horizontal connections between i and s?

4. Do you still need the inversions anywhere in the whole tree or can you use the circuit of
Fig. 5.28(a) everywhere?

5. In your opinion, is the multiplication of signed-digit operands more complicated, less
complicated or about the same when compared to regular operands? Why?



Chapter 6

Division (Incomplete chapter)

Division algorithms can be grouped into two classes, according to their iterative operator. The
first class, where subtraction is the iterative operator, contains many familiar algorithms (such
as nonrestoring division) which are relatively slow, as their execution time is proportional to the
operand (divisor) length. We then examine a higher speed class of algorithm, where multiplica-
tion is the iterative operator. Here, the algorithm converges quadratically; its execution time is
proportional to log2 of the divisor length.

6.1 Subtractive Algorithms: General Discussion

6.1.1 Restoring and Nonrestoring Binary Division

Most existing descriptions of nonrestoring division are from one of two distinct viewpoints. The
first is mathematical in nature, and describes the quotient digit selection as being −1 or +1,
but it does not show the translation from the set {−1,+1} to the standard binary representa-
tion {0, 1}. The second is found mostly in application notes of semiconductor manufacturers,
where the algorithm is given without any explanation of what makes it work. The following
section ties together these two viewpoints. We start by reviewing the familiar pencil and paper
division, then show the similarities and differences between this and restoring and nonrestoring
division. After this, we examine nonrestoring division from the mathematical concepts of the
signed digit representation to the problem of conversion to the standard binary representation.
This is followed by an example of hardware implementation. Special attention is given to two
exceptional conditions: the case of a zero partial remainder, and the case of overflow.

6.1.2 Pencil and Paper Division

Let us perform the division 4537/3, using the method we learned in elementary school:

181
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1 5 1 2
3)4 5 3 7

3
1 5
1 5

3
3

7
6
1

The forgoing is an acceptable shorthand; for example, in the first step a 3 is shown subtracted
from 4, but mathematically the number 3000 is actually subtracted from 4537, yielding a partial
remainder of 1537. The above division is now repeated, showing the actual steps more explicitly:

1512 ←Quotient
3)4537 ←Dividend

3000 ←Divisor∗q(MSD) ∗ 103

1537 ←Partial remainder
1500
0037
0030
0007
0006
0001 ←Remainder

Let us represent the remainder as R, the divisor as D, and the quotient as Q. We will indicate
the ith digit of the quotient as qi, and the value of the partial remainder after subtraction of the
jth radix power, trial product (qj ∗D ∗ Bj) as R(j) i.e., R(0) is the final remainder. Then the
process of obtaining the quotient and the final remainder can be shown as follows:

4537− 1 ∗ 3 ∗ 103 = 1537 or R(4)− q3 ∗D ∗ 103 = R(3)
1537− 5 ∗ 3 ∗ 102 = 0037 or R(3)− q2 ∗D ∗ 102 = R(2)
0037− 1 ∗ 3 ∗ 101 = 0007 or R(2)− q1 ∗D ∗ 101 = R(1)
0007− 2 ∗ 3 ∗ 100 = 0001 or R(1)− q0 ∗D ∗ 100 = R(0)

,

or, in general, at any step:
R(i) = R(i+ 1)− qi ∗D ∗ 10i ,

where i = n− 1, n− 2, . . . , 1, 0.

How did we determine at every step the value qi? We did it by a mental trial and error; for
example, for q3, we may have guessed 2, which would have given q3·D·103 = 2·3·1000 = 6000, but
that is larger than the dividend; so we mentally realized that q3 = 1, and so on. Now a machine
would have to go explicitly through the above steps; that is, it would have to subtract until the
partial remainder became negative, which means it was subtracted one time too many, and it
would have to be restored to a positive partial remainder. This brings us to restoring division—
algorithms, which restore the partial remainder to a positive condition before beginning the next
quotient digit iteration.
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Restoring Division

The following equations illustrate the restoring process for the previous decimal example:

4537− 3 ∗ 103= +1537 q3 = 1
1537− 3 ∗ 103= −1463 q3 = 2
−1463 + 3 ∗ 103= +1537 restore q3 = 1

+1537− 3 ∗ 102= +1237 q2 = 1
+1237− 3 ∗ 102= +937 q2 = 2
+ 937− 3 ∗ 102= +637 q2 = 3
+ 637− 3 ∗ 102= +337 q2 = 4
+ 337− 3 ∗ 102= +37 q2 = 5
+ 37− 3 ∗ 102= −263 q2 = 6
− 263 + 3 ∗ 102= +37 restore q2 = 5

+ 37− 3 ∗ 101= +7 q1 = 1
+ 7− 3 ∗ 101= −23 q1 = 2
− 23 + 3 ∗ 101= +7 restore q1 = 1

+ 7− 3 ∗ 100= +4 q0 = 1
+ 4− 3 ∗ 100= +1 q0 = 2
+ 1− 3 ∗ 100= −2 q0 = 3
− 2 + 3 ∗ 100= +1 restore q0 = 2

For binary representation, the restoring division is simply a process of quotient digit selection
from the set {0, 1}. The selection is performed according to the following recursive relation:

R(i+ 1)− qi ∗ d ∗ 2i = R(i).

We start by assuming qi = 1; therefore, subtraction is performed:

R(i+ 1)−D ∗ 2i = R(i).

Consider the following two cases (for simplicity, assume that dividend and divisor are positive
numbers):

Case 1: If R(i) ≥ 0, then the assumption was correct, and qi = 1.

Case 2: If R(i) < 0, then the assumption was wrong, qi = 0, and restoration is necessary.

Let us illustrate the restoring division process for a binary division of 29/3:

29− 3 ∗ 24 = −19 q4 = 1

−19 + 3 ∗ 24 = +29 restore q4 = 0

29− 3 ∗ 23 = +5 q3 = 1
+5− 3 ∗ 22 = −7 q2 = 1

−7 + 3 ∗ 22 = +5 restore q2 = 0
+5− 3 ∗ 21 = −1 q1 = 1

−1 + 3 ∗ 21 = +5 restore q1 = 0

+5− 3 ∗ 20 = +2 q0 = 1
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Figure 6.1: Graphical illustration of partial remainder computations in restoring and nonrestor-
ing division.

The left side of Figure 6.1 graphically illustrates the preceding division process.

Using the following terminology,

Y = Dividend
Q = Quotient (all quotient bits)

(0) = Final Remainder
D = Divisor

we have the following relationships:

Y = Q ∗D +R(0)
Q = q4 ∗ 24 + q3 ∗ 23 + q2 ∗ 22 + q1 ∗ 21 + q0 ∗ 20,

and in the above example:

Y = 29 and D = 3
Q = 0 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 9
29 = 9 ∗ 3 + 2.

It is obvious that, for n bits, we may need as many as 2n cycles to select all the quotient digits;
that is, there are n cycles for the trial subtractions, and there may be an additional n cycles for
the restoration. However, these restoration cycles can be eliminated by a more powerful class
of division algorithm: nonrestoring division.

6.2 Multiplicative Algorithms

Algorithms of this second class obtain a reciprocal of the divisor, and then multiply the result
by the dividend. Thus, the main difficulty is the evaluation of a reciprocal. Flynn (81) points
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out that there are two main ways of iteration to find the reciprocal. One is the series expansion,
and the other is the Newton–Raphson iteration.

6.2.1 Division by Series Expansion

The series expansion is based on the Maclaurin series (a special case of the familiar Taylor
series). Let b, the divisor, equal 1 + x.

g(X) =
1
b

=
1

1 +X
= 1−X +X2 −X3 +X4 − · · ·

Since X = b− 1, the above can be factored (0.5 ≤ b < 1.0):

1
b

= (1−X)(1 +X2)(1 +X4)(1 +X8)(1 +X16) · · ·

The two’s complement of 1 +Xn is 1−Xn, since:

2− (1 +Xn) = 1−Xn.

Conversely, the two’s complement of 1−Xn is 1 +Xn. This algorithm was implemented in the
ibm 360/91 (76), where division to 32-bit precision was evaluated as follows:

1. (1−X)(1 +X2)(1 +X4) is found from a ROM look-up table.

2. 1−X8 =
[
(1−X)(1 +X2)(1 +X4)

]
(1 +X).

3. 1 +X8 is the two’s complement of 1−X8.

4. 1−X16 is computed by multiplication (1 +X8)(1−X8).

5. 1 +X16 is the two’s complement of 1−X16.

6. 1−X32 is the product of (1 +X16)(1−X16).

7. 1 +X32 is the two’s complement of (1−X32).

In the ROM table lookup, the first i bits of the b are used as an address of the approximate
quotient. Since b is bit-normalized (0.5 ≤ b < 1), then |X| ≤ 0.5 and

∣∣X32
∣∣ ≤ 2−32; i.e., 32-bit

precision is obtained in Step 7.

The careful reader of the preceding steps will be puzzled by a seeming sleight-of-hand. Since
all divisors of the form b0 · · · bixxx · · · have same leading digits, they will map into the same
table entry regardless of the value of 0.00 · · · 0xxxx · · ·. How, then, does the algorithm use the
different trailing digits to form the proper quotient?

If we wish the quotient of 1/b,

1
b

=
1

1 +X
= (1−X)(1 +X2)(1 +X4)︸ ︷︷ ︸ · · ·
table entry—approximate quotient.

Suppose we look up the product of the indicated three terms. Since our lookup cannot be exact,
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we have actually found
(1−X)(1 +X2)(1 +X4) + ε0.

Let us make the table sufficiently large so that

|ε0| ≤ 2−9.

Now, in order to find 1 +X8, multiply the above by b (i.e., the entire number .b0 · · · b8xxxx · · ·).
Then, since b = 1 +X:

b︷ ︸︸ ︷
(1 +X)

Table entry︷ ︸︸ ︷
(1−X)(1 +X2)(1 +X4) = 1−X8

︸ ︷︷ ︸
(1−X2)︸ ︷︷ ︸

(1−X4)︸ ︷︷ ︸
(1−X8)

Thus, by multiplying the table entry by b, we have found

(1−X8) + bε0.

Upon complementation, we get:
1 +X8 − bε0,

and multiplying, we get:
1−X16 + 2X8ε0b− (bε0)2.

Since X = b− 1, the new error is actually

ε1 = 2b(b− 1)8ε0 − (bε0)2,

whose max value over the range
1
2
≤ b < 1

occurs at
b =

1
2

;

thus,
ε1 < 2−8ε0 − 2−2ε20 = ε0(2−8 − 2−2ε0).

If, in the original table, ε0 was selected such that

|ε0| ≤ 2−9,

then
|ε1| < 2−17.

Thus, the error is decreasing at a rate equal to the increasing accuracy of the quotient.
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The ROM table for quotient approximations warrants some further discussion, as the table
structure is somewhat deceptive. One might think, for example, that a table accurate to 2−8

would be a simple structure 28 × 8, but division is not a linear function with the same range
and domain. Thus, the width of an output is determined by the value of the quotient; when
1/2 ≤ b < 1, the quotient is 2 ≥ q > 1. The table entry should be 10 bits: xx.xxxxxxxx in the
example. Actually, by recognizing the case b = 1/2 and avoiding the table for this case, q will
always start 1.xx · · ·x, the “1” can be omitted, and we again have 8 bits per entry.

The size of the table is determined by the required accuracy. Suppose we can tolerate error no
greater than ε0. Then ∣∣∣∣1b − 1

b− 2−n

∣∣∣∣ ≤ ε0.
That is, when truncating b at the nth bit, the quotient approximation must not differ from the
true quotient by more than ε0.

∣∣∣∣b− 2−n − b
b2 − b2−n

∣∣∣∣ ≤ ε0.

2−n ≤ b2ε0 − b2−nε0.

Since b2ε0 � b2−nε0 (1/2 ≤ b < 1), we rewrite as

2−n ≤ b2ε0.

Thus, if |ε0| were to be 2−9,
2−n ≤ 2−9 · 2−2,

n = 11 bits.

Now again by recognizing the case b = 1/2 and that the leading bit of b = 0.1x, we can reduce
the table size; i.e., n = 10 bits.

6.2.2 The Newton–Raphson Division

The Newton–Raphson iteration is based on the following procedure to solve the equation f(X) =
0 (82):

• Make a rough graph y = f(X).

• Estimate the root where the f(X) crosses the X axis.

• This estimate is the first approximation; call it X1.

• The next approximation, X2, is the place where the tangent to f(X) at (X1, f(X1)) crosses
the X axis.
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Figure 6.2: Plot of the curve f(X) = 0.75 − 1
X and its tangent at f(X1), where X1 = 1 (first

guess). f ′(x1) = δy
δx .

• From Figure 6.2, the equation of this tangent line is:

y − f(X1) = f ′(X1)(X −X1).

• The tangent line crosses the X axis at X = X2 and y = 0.

0− f(X1) = f ′(X1)(X2 −X1),

X2 = X1 −
f(X1)
f ′(X1)

.

• More generally,

Xn+1 = Xn −
f(Xn)
f ′(Xn)

.

• Note: the resulting subscripted values (Xi) are successive approximations to the quotient;
they should not be confused with the unsubscripted X used in the preceding section on
binomial expansion where X is always equal to b− 1.

The preceding formula is a recursive iteration that can be used to solve many equations. In our
specific case, we are interested in computing the reciprocal of b. Thus, the equation f(X) =
1
X − b = 0 can be solved using the above recursion. Note that if:

f(X) =
1
X
− b,

then

f ′(X) = −
(

1
X

)2

,
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and at X = Xn

f ′(Xn) = −
(

1
Xn

)2

.

After substitution, the following recursive solution for reciprocal is obtained:

Xn+1 = Xn(2− bXn),

where X0 = 1.

The following decimal example illustrates the simplicity and the quadratic convergence of this
scheme:

Example 6.1 Find 1
b to at least three decimal digits where b = 0.75. Include a

calculation of the error = ε.
Solution: We start by X0 = 1 and iterate.

X0 = = 1 ε1 = 0.333334
X1 = 1(2− 0.75) = 1.25 ε2 = 0.083334
X2 = 1.25 (2− (1.25× 0.75)) = 1.328125 ε3 = 0.005208
X3 = X2 (2− (1.328125× 0.75)) = 1.333313 ε4 = 0.000021

The quadratic convergence of this scheme is proved below. That is, ei+1 ≤ (ei)2:

Xi+1 = Xi(2− bXi)

to find εi =
1
b
−Xi

εi+1 =
1
b
−Xi+1

εi+1 =
1
b
− [Xi(2− bXi)] =

1− 2bXi + (bXi)
2

b

but (εi)
2 =

(1− bXi)2

b2
=

1− 2bXi + (bXi)
2

b2
.

Substituting for Xi,

εi+1 =
1− 2b( 1−bεi

b ) + (1− bεi)2

b

εi+1 = 1− 2 + 2bεi + 1− 2bεi + b2εi/b

εi+1 = bεi
2.

(Recall that b < 1).

The division execution time, using the Newton–Raphson approximation, can be reduced by using
a ROM look–up table. For example, computing the reciprocal of a 32–bit number can start by
using 1024×8 ROM to provide the 8 most significant bits; the next iteration provides 16 bits, and
the third iteration produces a 32–bit quotient. The Newton–Raphson seems similar in many
ways to the previously discussed binomial approximation. In fact, for the Newton–Raphson
iteration:

Xi+1 = Xi(2− bXi).
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If X0 = 1, then

X1 = (2− b)
X2 = (2− b)(2− 2b+ b2)

= (2− b)(1 + (b− 1)2)
...

Xi = (2− b)(1 + (b− 1)2)(1 + (b− 1)4) · · · (1 + (b− 1)2i)

which is exactly the binomial series when X = b− 1.

Thus, the Newton–Raphson iteration on f(X) = 1
X − b and the binomial expansion of 1

b = 1
1+X

are different ways of viewing the same algorithm (81).

6.3 Additional Readings

Session 14 of the 1980 WESCON included several good papers on the theme of “Hardware
Alternative for Floating Point Processing.”

Undheim (83) describes the floating point processor of the NORD-500 computer, which is made
by NORSK-DATA in Norway. The design techniques are very similar to the ones described in
this book, where a combinatorial approach is used to obtain maximum performance. The entire
floating point processor is made of 579 ICs and it performs floating point multiplication (64
bits) in 480ns.

Birkner (84) describes the architecture of a high-speed matrix processor which uses a subset
of the proposed IEEE (short) floating point format for data representation. The paper de-
scribes some of the tradeoff used in selecting the above format, and it also discuss the detailed
implementation of the processor using LSI devices.

Cheng (85) and McMinn (86) describe single chip implementation of the proposed IEEE floating
point format. Cheng describes the AMD 9512, and McMinn the Inter 8087.

Much early literature was concerned with higher radix subtractive division. Robertson (87) was
a leader in the development of such algorithms. Both Hwang (88) and Spaniol (89) contain
reviews of this literature.

Flynn (81) provides a review of multiplicative division algorithms.

6.4 Exercises

1. Using restoring two’s complement division, perform a
b where a = 0.110011001100 and

b = 0.100111. Show each iteration.

2. Repeat the above using nonrestoring two’s complement division.

3. Using the Newton–Raphson iteration, compute 1/b where b = .9; b = .6; b = .52.
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4. Construct a look-up table for two decimal digits (20 entries only; i.e., divisors from .60 to
.79). Use this table to find b = 0.666.

5. An alternate Newton–Raphson iteration uses f(x) = X−1+1/b
X−1 (converges quadratically

toward the complement of the reciprocal), which has a root at the complement of the
quotient.

(a) Find the iteration.

(b) Compute the error term.

(c) Use this to find 1/b when b = .9 and b = .6.

(d) Comment on this algorithm as compared to that described in the text.

6. Another suggested approach uses:

f(x) = exp
[
−1

b(1− bx)

]
.

(This recursion is unstable and converges very slowly.) Repeat problem 3 for this function.

7. A hardware cube-root function a1/3 is desired based on the Newton–Raphson iteration
technique. Using the function

f(x) = x3 − a,

(a) Find the iteration (xi+1 = to1cm).

(b) Find the first two approximations to .581/3 using the iteration found in (a).

(c) Show how the convergence (error term) would be found for this iteration (i.e., show
ei+1 in terms of ei). Do not simplify!

8. A new divide algorithm (actually a reciprocal algorithm, 1/b) has been suggested based
on a Newton–Raphson iteration, based on finding the root of:

f(x) = b2 − 1/x2 = 0.

Will this work? If not, explain why not.

If so, find the iteration and compare (time required and convergence rate) with other
Newton–Raphson based approaches.

9. Two functions have been proposed for use in a Newton–Raphson iteration to find the
reciprocal (1/b). Answer the following questions for each function:

(a) Will the iteration converge to 1/b?

i. f(x) = x2 − 1/b = 0
ii. f(x) = 1

x2 − b = 0

(b) Find the iteration.

i. f(x) = x2 − 1/b = 0
ii. f(x) = 1

x2 − b = 0

(c) Is this a practical scheme—will it work in a processor?

i. f(x) = x2 − 1/b = 0
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ii. f(x) = 1
x2 − b = 0

(d) Is it better than the scheme outlined in the chapter?

i. f(x) = x2 − 1/b = 0
ii. f(x) = 1

x2 − b = 0



Chapter 7

Solutions

We show here the solutions to the exercises present in the book. It is really quite important that
you try solving each exercise before looking at the solution in order to benefit from it. Even if
you think that you managed to solve the exercise, it is still recommended to read the solution
since we sometimes discuss other related topics and point to new things.

193
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Solutions to Exercises

Exercise 1.1. We simply use the definition of the modulo operation and the properties of
arithmetic. N ′ = Nmodµ and M ′ = Mmodµ mean that N = N ′+kµ and M = M ′+`µ where
k and ` are integeres. Hence,

(N [+,−,×]M)modµ = ((N ′ + kµ)[+,−,×](M ′ + `µ))modµ
= ((N ′[+,−,×]M ′) + (k[+,−,×]`)µ))modµ
= (N ′[+,−,×]M ′)modµ

Exercise 1.1

Exercise 1.2(a) In signed division, the magnitude of the quotient is independent of the signs
of the divisor and dividend.

Numerator Denominator Quotient Remainder
11 5 2 1
11 -5 -2 1
-11 5 -2 -1
-11 -5 2 -1

←↩

Exercise 1.2(b) For the modulus division, the remainder is the least positive residue.
Numerator Denominator Quotient Remainder

11 5 2 1
11 -5 -2 1
-11 5 -3 4
-11 -5 3 4

←↩

Exercise 1.3. For a number N and divisor D, N
D = q + r

D as long as D 6= 0.

Case 1: (N ≥ 0)⇒ qs = qm and rs = rm

Case 2a: (N < 0, D > 0 and rm = 0)⇒ qs = qm and rs = rm

Case 2b: (N < 0, D > 0 and rm > 0)⇒ qs = qm + 1 and rs = rm −D

Case 3a: (N < 0, D < 0 and rm = 0)⇒ qs = qm and rs = rm

Case 3b: (N < 0, D < 0 and rm > 0)⇒ qs = qm − 1 and rs = rm +D

Moral of the story: Always look for the limiting cases.

Exercise 1.3

Exercise 1.4. Here too, we assume D 6= 0 and N
D = q + r

D .

Case 1: (D > 0)⇒ qf = qm and rf = rm
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Case 2a: (D < 0, and rm = 0)⇒ qf = qm and rf = rm

Case 2b: (D < 0 and rm 6= 0)⇒ qf = qm − 1 and rf = rm +D

Once more, always look for the limiting cases.

Exercise 1.4

Exercise 1.5. The maximum value is when all the digit values (di) are equal to β − 1. Hence,
the maximum value of

N =
i=m∑
i=0

(β − 1)βi

=
i=m∑
i=0

βi+1 −
i=m∑
i=0

βi

= (βm+1 + βm + βm−1 + · · ·+ β)− (βm + βm−1 + · · ·+ β + 1)
= βm+1 − 1

Thus, βm+1 > N ≥ 0. Exercise 1.5

Exercise 1.6. According to our definitions, N is represented as dm · · · d0 with m = n − 1.
Hence, N is less than βn and the operation βn −N is actually:

n digits︷ ︸︸ ︷
1 0 0 0 0 · · · 0
− dm dm−1 dm−2 dm−3 · · · d0

, recall m = n− 1.

For all lower order digits which satisfy d0 = d1 = · · · = di = 0 , the operation is

0 · · · 0
− 0 · · · 0

0 · · · 0.

and the RC(d)i is
RC(d)0 = RC(d)1 = · · · = RC(d)i = 0.

For position i+ 1 where di+1 6= 0, the first (lower order) nonzero element in N , we borrow from
the more significant digits and the sequence of numbers at the top row becomes 0 (β − 1) (β −
1) · · · (β − 1) (beta). The resulting digits are

RC(d)i+1 = β − di+1,

and for all elements dj thereafter, m ≥ j ≥ i+ 2,

RC(d)j = β − 1− dj .

Exercise 1.6

Exercise 1.7. With N represented by dmdm−1 · · · d1d0 we have two possibilities.
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If N is positive then dm = 0 and the statement is true by the definition of binary number
representation.

If N is negative then dm = 1 and the absolute value of N is equal to (2n−N) where n = m+1.

N = −(2m+1 −
m∑
i=0

di2i)

=
m−1∑
i=0

di2i + dm2m − 2m+1

=
m−1∑
i=0

di2i + (dm − 2)2m. However, dm = 1 in this case. Thus,

N =
m−1∑
i=0

di2i + (−1)dm2m.

Hence, the statement is true for N either positive or negative and this concludes the proof.
Exercise 1.7

Exercise 1.8. No, it is not since the representation 99 · · · 99 is equivalent to 0. Exercise 1.8

Exercise 1.9. First, we calculate the nines’ complement then add the ‘end-around’ carry.

250 ⇒ 250
−245 +754

1004
⇓

004
+1

5

Exercise 1.9

Exercise 1.10. The number of bits needed for the representation of the product is derived from
analyzing the multiplication of the two largest representable unsigned operands:

P = (2n − 1)× (2n − 1) = 22n − 2n+1 + 1 = 22n−1 + 22n−1 − 2n+1︸ ︷︷ ︸
Positive number

+1.

Thus, the largest product Pmax is bounded such that 22n > P > 22n−1. Hence, 2n bits are
necessary and sufficient to represent it. Exercise 1.10

Exercise 1.11. Most people when confronted with this exercise for the first time will over-
restrict themselves by thinking within the “virtual box” drawn by the dots:

u u uu u uu u u
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However, the requirements never mentioned anything related to the box. The whole idea is to
actually go far and beyond the box as in:

u u uu u uu u u-��
�	

6@
@R

In table 1.1, we saw several binary coding schemes giving completely different values to the
same bit pattern. It was quite obvious that the way we ‘look’ at a pattern determines our
interpretation of its value. The moral of the story in this exercise is to check your assumptions.
How are you ‘looking’ and ‘interpreting’ the problem. Are you over-restricting yourself by
implicitly forcing something that is not required in the system that you are studying? Keep this
idea with you while reading the rest of the book! Exercise 1.11

Exercise 1.12(a) Since this is a weighted positional number system and the radix is β = −1+j
then the weight of position k is βk = (−1 + j)k = (

√
2)k(−1+j√

2
)k which yields:

· · · −16 + 16j 16 −8− 8j 8j 4− 4j −4 2 + 2j −2j −1 + j 1.

Based on these weights 0 1011 0011⇒ −8− 11j and 1 1101 0001⇒ 5.

←↩

Exercise 1.12(b) From the weights we see that each four digits form a group where the
imaginary part of the two most significant digits might cancel each other. For example, the
least significant group is the positions with the weights: {2 + 2j,−2j,−1 + j, 1}. To have a real
number represented by this group the most significant two bits must be either both ones or both
zeros and the second digit from the right must always be zero. This leads to the simple test:

If d4l+3 = d4l+2 and d4l+1 = 0 for l = 0, 1, 2, · · · then the number represented is a
real number.

←↩

Exercise 1.12(c) If we look at a group of four position as one digit Dl, we see that such a
digit takes the following values to give a real number:

0000 ⇒ 0
0001 ⇒ 1
1100 ⇒ 2
1101 ⇒ 3

with each Dl having a weight equal to −4 times that of Dl−1. In fact, if we define α = −4
and n as the number of 4 bits groups then the system at hand represents real numbers as
X =

∑l=n−1
l=0 Dlα

l. Since the values of Dl go from 0 to |α| − 1 then this system is similar to the
negabinary system presented in Table 1.2 and is capable of representing all integers.

For n = 1, i.e. a single group of four bits, the numbers represented are the values of D0 ∈
{0, 1, 2, 3}. For n = 2, (D1 × α1) ∈ {0,−4,−8,−12} and each of those values can be combined
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with any value for D0 which results in X ∈ {−12,−11,−10, · · · , 0, 1, 2, 3}. For n = 3, (D2×α2) ∈
{0, 16, 32, 48} and X ∈ {−12,−11, · · · , 48}. This process can be continued and the system is
able to represent any positive or negative number given enough bits.

←↩

Exercise 1.13. Once more, the basic idea is to re-check your implicit assumptions. Did the
problem state that these dots are infinitly small? Most people attempt to force the line to pass
through the center of the dots assuming them to be single points. However, once we get rid of
this false assumption we can easily solve it as:

u u uu u uu u uXXXz����9XXXz
In this section of ‘going far and beyond’, we are explicitly re-checking our assumptions about
number representations and trying to see if there are better ways to deal with the various
arithmetic operations. Exercise 1.13

Exercise 1.14. If a redundant system with base β has both positive and negative digits with
di = β or di = −β as possible values then it has multiple representations of zero. For example,
in a system with −1 ≤ di ≤ β, we represent zero as 00 or 1̄β.

If the system has digits at one side only of zero but still including zero, i.e. α ≤ di ≤ 0 or
0 ≤ di ≤ γ, then a unique representation of zero exist. An example of these systems is the carry
save representation (β = 2, di ∈ {0, 1, 2})used in parallel multipliers. Exercise 1.14

Exercise 1.15. Once more, a person should check the implicit assumptions. The problem
did not state the kind of pen you use to draw the line. People tend to think of a line in the
mathematical sense where it has zero width. Real lines on paper are physical entities that
exhibit some non-zero width. Times and again while dealing with arithmetic on computers we
are reminded that we are not really working with a pure mathematical system but rather with
a physical computer. With that said, just use a pen with a wide enough tip and you are able to
cover all the dots in one line! In fact, a simple extension to this idea is to just place your thumb
on the nine dots and realize: “I covered them all with only one ‘dot’, no lines at all!”

In section 1.5, we intentionally went ‘far and beyond’ and attempted to think out of the box in
many dimensions to facilitate our job later when designing circuits. This final exercise is here to
teach you that, in general, our instinct will lead us to the correct solution. However, we might
be sometimes blinded by our own previous expositions to some subject to the point of not seeing
a solution. We should then relax, go back to the basics, and if we cannot solve it, recheck our
assumptions (our ‘box’). Otherwise, ask a four year old child for help! Exercise 1.15

Exercise 2.1. In the double format the characteristic is still 7 bits as in the short format, hence
expmax = 63 and expmin = −64. For the mantissa, Mmax = 1− 1614 and Mmin = 16−1. Thus,
the largest representable number is

max = 1663 × (1− 16−14).
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and the smallest positive normalized number is, as in the short format,

min = 16−64(16−1).

Exercise 2.1

Exercise 2.2. To have the same or better accuracy in a larger base, the analysis of MRRE
leads to tk − t1 ≥ k− 1. For the case of k = 4 or β = 16 this relation becomes tβ=16 ≥ tβ=2 + 3.
Hence, three additional mantissa bits must exist in the hexadecimal format to achieve the same
accuracy as the binary format.

Another way of looking at this result is to think that those additional 3 bits compensate for the
leading zeros that might exist in the MSD. Obviously, if a hexadecimal base is used, we would
use a full additional digit of 4 bits which leads to a higher accuracy in the hexadecimal format
at the expense of a larger storage space. Exercise 2.2

Exercise 2.3. Taking the decimal system with five digits after the point, we can provide the
following as an example of a total loss of significance: (1.12345×101+1.00000×1010)−1.00000×
1010 which yields (1.00000× 1010− 1.00000× 1010) = 0 while the mathematicaly correct answer
is 1.12345× 101 as given by associating the second and third terms together first.

The heart rate of some readers might now be running a bit faster than usual since they thought
of the question: does this mean that the computers handling my bank account can lose all the
digits representing my money?

Well, fortunately enough there is another branch of science called numerical analysis. People
there study the errors that might creep into calculations and try to give some assurance of
correctness to the results. Floating point hardware can lend them some help as we will see when
we discuss the directed rounding and interval arithmetic. Exercise 2.3

Exercise 2.4. Obviously, if the exponent difference is equal to zero a massive cancellation
might occur as in 1.11111 × 220 − 1.11110 × 220 = 0.00001 × 220. The most significant digits
may also cancel each other if the exponent difference is equal to one as in the case

1.00000× 220 − 1.11110× 219 = (1.00000− 0.11111)× 220

= 0.00001× 220

= 1.00000× 215

where a binary system is used as an example. We prove here that for a non-redundant system
with base β, if the exponent difference is two or larger, a massive cancellation is impossible. The
minimum value of the significand of the larger number is 1.0000 · · · 0 while the maximum value
of the significand of the smaller number (after alignment) is 0.0(β − 1)(β − 1) · · · (β − 1). The
difference is thus

1. 0 0 0 · · · 0
− 0. 0 β − 1 β − 1 · · · β − 1

0. β − 1 0 0 · · · 1

which requires only a one digit left shift for normalization. Hence the necessary condition for
massive cancellation is that the exponent difference is equal to zero or one.
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According to this condition on the exponent, we are sure that the right shift for alignment is,
at most, by one digit. Hence, a single guard digit is enough for the case of massive cancellation.

(Note that these results hold even for the case of subnormal numbers defined in the ieee stan-
dard.)

Exercise 2.4

Exercise 2.5. When a > 0, 5(a) = RZ(a) and 4(a) = RA(a). On the other hand, when
a < 0, 5(a) = RA(a) and 4(a) = RZ(a).

For systems where a single zero is defined all these rounding methods yield same result for a = 0
which is a. In systems where two signed zeros are defined (such as in the ieee standard) the
exact definition to round each of the two representation in the various rounding directions should
be followed. Exercise 2.5

Exercise 2.6. We deduce from Fig. 2.1 that 4(a) = −5 (−a). Exercise 2.6

Exercise 2.7. If 4(a) = a (i.e. if it a is representable) then 4(a) = 5(a), otherwise 4(a) =
5(a) + 1ulp. Exercise 2.7

Exercise 2.8. If RA(a) = a (i.e. if it a is representable) then RA(a) = RZ(a), otherwise
|RA(a)| = |RZ(a) + 1ulp|. Exercise 2.8

Exercise 2.9. The standard defines the binary bias as 2w−1−1. Hence, expmax +bias = 2w−2
which is a string of all ones except for the LSB which is 0, i.e. one less than the special value of
all ones. Similarly, expmin + bias = 1 which is one more than the special value of all zeros.

Exercise 2.9

Exercise 2.10. In the binary32 format, we have min = 2−126 × 1.0. Using the definition of
the standard, the largest subnormal number is

2−126 × 0.11 · · · 1 = 2−126 × (1.0− 0.00 · · · 1)
= min− 2−126 × 0.00 · · · 1

which means that there is a continuation between the normal and subnormal numbers. If we
use 2−127 as the scaling factor for the subnormal numbers a gap will exist. The case of the other
formats is similar. Exercise 2.10

Exercise 2.11. As indicated in the text, both the ieee standard and the pdp-11 have reserved
exponents. In contrast, the IBM system does not reserve exponents for a special use. We only
show the case of normalized numbers in the ieee standard. For the single precision we get:
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ieee pdp-11 S/370
Radix 2 2 16
Significand (1)+23 bits (1)+23 bits 6 digits
Minimum Significand 1 0.5 1/16
Maximum Significand ≈ 2 ≈ 1 ≈ 1
Exponent 8 bits 8 bits 7 bits
Bias 127 128 64
Minimum exponent -126 -127 -64
Maximum exponent 127 126 63
Minimum number 2−126 ≈ 1.2× 10−38 2−128 ≈ 3× 10−39 16−65 ≈ 5.4× 10−79

Maximum number 2128 ≈ 3.4× 1038 2126 ≈ 8.5× 1037 1663 ≈ 7.2× 1075

For the double precision, the results are:
ieee pdp-11 S/370

Radix 2 2 16
Significand (1)+52 bits (1)+55 bits 14 digits
Minimum Significand 1 0.5 1/16
Maximum Significand ≈ 2 ≈ 1 ≈ 1
Exponent 11 bits 8 bits 7 bits
Bias 1023 128 64
Minimum exponent -1022 -127 -64
Maximum exponent 1023 126 63
Minimum number 2−1022 ≈ 2.2× 10−308 2−128 ≈ 3× 10−39 16−65 ≈ 5.4× 10−79

Maximum number 21024 ≈ 1.8× 10308 2126 ≈ 8.5× 1037 1663 ≈ 7.2× 1075

It is clear that the extra bits in the pdp-11 and S/370 serve to improve the precision but not
the range of the system. Exercise 2.11

Exercise 2.12. The exact representation is the infinite binary sequence

(0.0001100110011001100 . . .)β=2.

The binary32 is normalized with a hidden one, hence the sequence becomes

(1).100110011001100110011001100 . . .× 2−4

when normalized. The significand has 23 bits whatever lies beyond that in the infinite sequence
must be rounded. The rounded part is larger than half of the unit in the least significant place
of the part remaining so we add one to the unit of the last place to get:

(1).10011001100110011001100 |1100 . . .× 2−4

rounded
⇓

(1).10011001100110011001101 ×2−4.

The biased exponent is 127− 4 = 123 and the representation is thus:

0 01111011 10011001100110011001101

which is slightly more than 0.1. (It is about 0.1000000015.)
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Similarly, binary64 yields

0 01111111011 1001100110011 . . . 00110011010

a quantity also larger than 0.1.

Exercise 2.12

Exercise 2.13. In binary64 and round to nearest even, 0.3 is represented as

0 01111111101 0011001100110011 . . . 001100110011

which is slightly less than 0.3 due to rounding. The multiplication of x ≈ 0.1 (represented as
0 01111111011 1001100110011 . . . 00110011010 = (1).1001100110011 . . . 00110011010 × 2−4) by
3 yields 100.11001100110011 . . . 0011001110 × 2−4 ⇒ (1).00110011 . . . 001100110011 | 10 × 2−2

which is rounded to (1).00110011 . . . 001100110100× 2−2 and represented by

0 01111111101 0011001100110011 . . . 001100110100

a quantity larger than 0.3. Now 3x − y gives 0.000 . . . 001 × 2−2 which is normalized to
(1).000 . . . 00× 2−54 ≈ 5.551× 10−17.

On the other hand, 2x yields

0 01111111100 1001100110011 . . . 00110011010

with just a change in the exponent from the representation of x. Then 2x− y gives

(1).100110011001100 . . . 1100110011010×2−3

− (1).0011001100110011 . . . 001100110011×2−2

which becomes
(0).1100110011001100 . . . 110011001101 | 0×2−2

− (1).0011001100110011 . . . 001100110011 ×2−2

after the alignment yielding a result of

− (0).01100110011001100 . . . 11001100110 | 0×2−2

When normalized and rounded 2x− y is

− (1).100110011001100 . . . 1100110011000×2−4.

Hence, 2x− y + x gives

− (1).100110011001100 . . . 1100110011000×2−4

+ (1).100110011001100 . . . 1100110011010×2−4

+ (0).000000000000000 . . . 0000000000010×2−4

which is equal to 2−55 ≈ 2.776× 10−17. Now,

3x− y
2x− y + x

∣∣∣∣
(x=0.1,y=0.3)

=
2−54

2−55
= 2 !
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Exercise 2.13

Exercise 2.14. The member of the cohort with the largest exponent is the one where the least
significant of the n digits coincides with the right most (least significant) of the p digits. A left
shift by one position of the n digits leads to an increment of the exponent by one. This can be
continued till the MSD of the n digits is at the MSD of the p digits.

member number case
1 ← p− n → ← n → Largest exponent

2 ← p− n− 1 → ← n → 1

3 ← p− n− 2 → ← n → 2
...

p− n+ 1 ← n → ← p− n → smallest exponent

So the total number of members in the cohort is p− n+ 1. Exercise 2.14

Exercise 2.15. As we have seen in example 2.16, in a normalized floating point hardware
system with a fixed width datapath, the digits that are shifted are eventually droped or used
for rounding. Such a choice is acceptable since these are the digits of lowest significance in the
smaller number. On the other hand, if we shift the larger number to the left and drop the shifted
digits, those digits would be the most significant ones which is not acceptable.

In some specific cases, a designer might opt to increase the datapath width to allow for a left
shift without loosing the MSDs. However, the common practice is to use the right shift for
operands alignement. Exercise 2.15

Exercise 2.16. If the significand of the larger operand is ml while that of the smaller operand
is ms then 1 ≤ ml < β and 1 ≤ ms < β because they are both originally normalized according
to our assumptions so far.

After alignment we get 0 ≤ msalign < β which yields

1 ≤ ml +msalign < 2β.

If the result is in the range 1 ≤ ml + msalign < β, there is no need to shift. However, if
β ≤ ml + msalign < 2β we must shift the result to the right by one digit to normalize it.
Such a shift is equivalent to dividing the result by β to reach the new range [1, 2(. This range is
representable as a normalized number even when β = 2. In the case of a right shift, the exponent
is increased by 1. If this results in exponent spill, i.e. the exponent reaching its maximum value,
the postnormalization sets the number to its largest possible value or to ∞ according to the
rounding direction currently used. We will explain the exponent spill shortly.

If the system does not require normalized numbers we start with 0 ≤ ml < β and 0 ≤ ms < β
then follow the same steps to reach the same conclusion. Exercise 2.16

Exercise 2.17. In the addition and subtraction operations, we only care about the difference
between the values of the two exponents. That difference is the same whether we use the true
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exponents or the biased exponents. The result in the case of addition or subtraction then has
the exponent of the larger operand. That exponent value might change due to normalization
but that change can be done on the biased exponent without causing trouble. Exercise 2.17

Exercise 2.18. Let us denote the two (true) exponents by exp1 and exp2 and denote the
exponent of the max by expmax and that of min by expmin. Since

expmin ≤ exp1 ≤ expmax

expmin ≤ exp2 ≤ expmax

then the exponent of the result lies in the range

2× expmin ≤ exp1 + exp2 ≤ 2× expmax.

Since expmin is negative,
2× expmin < expmin

which indicates that an underflow is possible under these conditions. Obviously, an overflow is
also possible.

Note that in a format with subnormals such as the ieee binary32 format, an underflow in
mutliplication occurs always when both inputs are subnormal numbers. An underflow might
happen even if only one operand is subnormal, can you see why? Exercise 2.18

Exercise 2.19. We should shift as many significant digits as possible from those below the
β−(p−1) position. The words “significant” and “as possible” are the important keywords.

Obviously, there is a non-ending sequence of non-significant zeros to the right of the number. We
do not need to shift those. However, if the zero digit is significant (as a result from multiplication
of 2 by 5 in base 10 for example) then we should take it into account and shift it in. This explains
“significant”.

For the “as possible”, we should not shift to the point of losing the MSD of the result. So the
shifting stops when the most significant non-zero digit reaches the β0 position. Another point
on the “as possible” side is the exponent range. Since the exponent is decremented by one for
each left shift of one position, we should stop if the exponent reaches the underflow limit.

Exercise 2.19

Exercise 2.20. We have

expmin ≤ exp1 ≤ expmax

expmin ≤ exp2 ≤ expmax

then the exponent of the result lies in the range

expmin − expmax ≤ exp1 − exp2 ≤ expmax − expmin

which indicates that an underflow is possible.

Because expmin < 0, the upper bound is larger than expmax and an overflow may occur. A
special case in the division operation is the division by zero which is usually treated as an
overflow leading to a result of max or ∞.
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Note that in a format with subnormals such as the ieee binary32 format, an underflow in
division might occur more frequently. Exercise 2.20

Exercise 2.21. Obviously yes. If we subtract the two biased exponents then the bias of the
first cancels that of the second. To get a correct biased exponent for the result we add the bias
back. Exercise 2.21

Exercise 2.22. For this simple RNE implementation, whether we add A to G or L we get the
same logic value. This is not always the case as we will see later. This exercise is here just to
remind you to look “far and beyond” as we learned in the first chapter. Some simple changes
can have big effects sometimes! Exercise 2.22

Exercise 2.23. In the following, the numbers (a, b, c, d) themselves are rounded first according
to the statement of the problem. Then, the operations are rounded to give us the maximum
and minimum value of the result.

Case 1: If c and d are of the same sign their product is subtracted from s. For smax we want
to reduce their magnitude, and for smin we want to increase their magnitude. Hence, for
smax we use 5(RZ(c)×RZ(d)). This helps us to combine the case for both numbers being
positive or both being negative. If we insist on using 4 and 5 only then we must split
this formula into 5(4c×4d) for c and d negative and 5(5c×5d) for c and d positive.
Notice that to decrease the magnitude of a negativenumber we use 4. Similar arguments
hold for smin and for the other cases below.

a and b of the same sign: Then

smax = 4(4(RA(a)×RA(b))−5(RZ(c)×RZ(d)) )
smin = 5(5(RZ(a)×RZ(b))−4(RA(c)×RA(d)) )

a and b of opposite signs: Then

smax = 4(4(RZ(a)×RZ(b))−5(RZ(c)×RZ(d)) )
smin = 5(5(RA(a)×RA(b))−4(RA(c)×RA(d)) )

Case 2: If c and d are of opposite signs their product adds to s. For smax we want to increase
their magnitude, and for smin we want to decrease their magnitude.

a and b of the same sign: Then

smax = 4(4(RA(a)×RA(b))−5(RA(c)×RA(d)) )
smin = 5(5(RZ(a)×RZ(b))−4(RZ(c)×RZ(d)) )

a and b of opposite signs: Then

smax = 4(4(RZ(a)×RZ(b))−5(RA(c)×RA(d)) )
smin = 5(5(RA(a)×RA(b))−4(RZ(c)×RZ(d)) )
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Since the ieee standard does not provide the ‘RA’ rounding, a compliant implementation with-
out ‘RA’ will even do more calculations!

It is clear from this exercise how the software dealing with floating point numbers and aiming
to provide a good interval analysis must switch the rounding mode quite often and recalculate
(in fact, just re-round) some results. Exercise 2.23

Exercise 2.24. Since the fractional value can be either positive or negative, the value added
for rounding may be positive, negative or zero. Compared to conventional ieee rounding logic,
more complicated situations arise in some of the rounding cases for this redundant digit design.
For example, the rounding to zero (RZ) mode of the ieee is not just a simple truncation but
a −1 is added to the number at the rounding location if the fractional value is negative. The
decision is according to the following table where the given value is added to L the bit at the
rounding location.

range RNE RZ RP RM
+ve −ve +ve −ve

−1 < f < −0.5 −1 −1 0 −1 −1 0
−0.5 −|L| −1 0 −1 −1 0

−0.5 < f < 0 0 −1 0 −1 −1 0
0 0 0 0 0 0 0

0 < f < 0.5 0 0 1 0 0 1
0.5 |L| 0 1 0 0 1

0.5 < f < 1 1 0 1 0 0 1

Two points in this table challenge our previous assumptions about rounding.

1. RZ is not always a truncation.

2. We may sometimes subtract instead of add to get the rounded result.

Exercise 2.24

Exercise 2.25. Since the signaling NaN indicates uninitialized FP number, it is better if the
signaling NaN is the representation used in the booting status of the memory (a value of all
ones). Otherwise, at the declaration of each variable in a high level language the compiler must
insert a few instructions to modify one position in the bit string.

Hence, for such a system, the definition where a 1 in the significand’s MSB indicates a signaling
NaN and a 0 indicates a quiet NaN is preferred. Exercise 2.25

Exercise 2.26. The result for (+∞)/(−0) is −∞. Note that the division by zero is signaled
only when the dividend is a finite non-zero number. As mentioned earlier the arithmetic on
infinities is considered exact and does not signal the inexact nor the overflow exceptions. Hence,
we get the result of −∞ with no exceptions at all!

As for
√
−0, according to the standard and the explanation provided in section 2.6.2 (point 6 of

the invalid exception),
√
−0 = −0. This is somewhat an arbitrary decision. It could have been

defined as equal to +0. Again, no exceptions raised at all!
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This exercise shows us that it is important to really read the fine details of standards and stick
to them. A complying system must correctly implement even these rare occurances.

An alert reader might feel that the lesson here contradicts the spirit of going ‘far and beyond’
that we got from exercise 1.11 and its follow-ups in the previous chapter. This is not true. It
is really important to think freely at the early stages of design. However, once the design team
agrees on some decisions, everyone should implement them. Otherwise, chaos occurs when the
different parts of the design are grouped.

The maxim is “An early standardization stifles innovation and a late standardization leads to
chaos”.

This does not, however, prevent a designer from innovating within the premises of the standard.
We will discuss a number of such innovations in the subsequent chapters. Exercise 2.26

Exercise 2.27. The main reason that caused the appearance of a denormalized number out of
normalized ones is the alignment shift to equate the exponents before the subtraction.

For the subnormal range, all the numbers have the same exponent and no alignment shift is
required. Hence, the result is always exact which is either another denormalized number or
zero. Exercise 2.27

Exercise 3.1. Recalling that −xi and mi − xi are congruent modmi
we get the residue of

Xc = M −X at position i as

(M −X)modmi
= Mmodmi

+ (−X)modmi

= 0 + (−xi)modmi

= (mi − xi)modmi

= xci .

Hence, Xc = [xci ]. Exercise 3.1

Exercise 3.2. The total range for the moduli 32, 31, 15 is

32× 31× 15 = 14 880,

which means that the range of signed integers is

−7440 ≤ x ≤ 7439.

To perform the operation (123 − 283 = −160), we must first convert each of the operands to
this residue system.

123 = [27, 30, 3]
283 = [27, 4, 13].

Hence,
−283 = [5, 27, 2].



208 CHAPTER 7. SOLUTIONS

Then, we add the residues:

[27, 30, 3] + [5, 27, 2] = [32, 57, 5]
= [0, 26, 5].

As a check:

160 = [0, 5, 10]
−160 = [0, 26, 5].

The results match, and the arithmetic is performed correctly. Exercise 3.2

Exercise 3.3. Without paying attention, one might think that the range of representable
numbers in this system is equal to 4 × 3 × 2 = 24. However, since 4 and 2 share a common
factor, the range is only up to the least common multiple of the bases which is 12. Beyond that,
the same representations repeat.

It is important to note that some combinations of residues never appear. It is impossible to
have 1 or 3 as a residue for the modulus 4 (which means the number is odd) while having 0
as the residue for 2 (which means the number is even). Similarly, it is impossible to get 0 or 2
as a residue for 4 if we have 1 as the residue for 2. These ‘four’ impossible combinations when
multiplied by the three possibilities for the residue of the base 3 yield the 12 representations
that never occur.

The following table summaries the results.

Residues Residues Residues
N 4 3 2 N 4 3 2 N 4 3 2

0 0 0 0 10 2 1 0 20 0 2 0
1 1 1 1 11 3 2 1 21 1 0 1
2 2 2 0 12 0 0 0 22 2 1 0
3 3 0 1 13 1 1 1 23 3 2 1
4 0 1 0 14 2 2 0 24 0 0 0
5 1 2 1 15 3 0 1 25 1 1 1
6 2 0 0 16 0 1 0 26 2 2 0
7 3 1 1 17 1 2 1 27 3 0 1
8 0 2 0 18 2 0 0 28 0 1 0
9 1 0 1 19 3 1 1 29 1 2 1

Only the representations for the numbers from zero to eleven are unique. Exercise 3.3

Exercise 3.4. The equations derived so far still apply. However, there are two simpler cases of
special interest:

β = kmj results in Amodmj
= a0modmj

.

mj = βk results in Amodmj
being equal to the least significant k digits of A.

Exercise 3.4
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Exercise 3.5. Since X =
∑
xiβ

i then

Xmodβ−1 =
(∑

xiβ
i
)

modβ−1

=
(∑

(xiβi)modβ−1

)
modβ−1

=
(∑

(ximodβ−1β
imodβ−1)modβ−1

)
modβ−1.

However, βimodβ−1 = (βmodβ−1)i = (1)i = 1. Hence,

Xmodβ−1 =
(∑

(ximodβ−1)
)

modβ−1.

Exercise 3.5

Exercise 3.6. This algorithm is equivalent to a modulo 9 operation. Assume we are adding
two decimal numbers A and B with digits ai and bi to form the sum S. First we show that this
algorithm for adding up the digits of the numbers gives the same result as taking the mod9 of
the numbers.

Amod9 = (
∑

ai10i)mod9 = [
∑

(ai10imod9)]mod9

Amod9 = [
∑

((aimod9)(10imod9))]mod9

Amod9 = [
∑

((ai)(10mod9)i)]mod9 = [
∑

ai]mod9

Therefore, this algorithm gives the mod9 of each number and since:

(Amodµ +Bmodµ)modµ ≡ Smodµ,

this checksum algorithm will always work.

Historically, this algorithm has been also known as casting out 9’s because whenever you get a
9 you can replace it by zero. It is possible to teach this checksum to young children learning to
add multi-digit numbers to check their operations. Exercise 3.6

Exercise 3.7. Two functions are different if they have different values for at least one com-
bination of the inputs. Since this is a d-valued system, each combination leads to d different
possible functions. Hence the number of logic functions is dnumber of combinations.

For r inputs we have dr different possible combinations which yields dd
r

logic functions for the
(r, d) system. Exercise 3.7

Exercise 5.1. Yes this algorithm will work. The variable count is a dummy variable and we
can substitute it by count=Y-Z so that

1. initially count =0 means Z=Y,

2. the condition count<Y becomes Z>0, and

3. the incrementing step count=count+1 reduces to Z=Z-1.
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This substitution transforms this new algorithm to algorithm 5.1 which proves that it is equiv-
alent and will work correctly.

Despite their mathematical equivalence, the hardware implementations of both algorithms are
different. In this proposed method the comparison is with Y which is an unknown variable at
the design time. Hence, the comparison requires a bit by bit matching of Y and the current
value of count. This matching is done by a row of XOR gates. Each gate has a zero output if
the two corresponding bits match correctly. The outputs of that row of XOR gates are then fed
to a tree to form their NOR function as in algorithm 5.1.

The comparison with a data-dependent quantity should, in general, be avoided. We will see this
same recommendation when we discuss the division algorithms. Exercise 5.1

Exercise 5.2. The generation of a partial product in binary is quite simple. Let us assume
that X and Y are represented by the bits strings xn−1 · · ·x1x0 and yn−1 · · · y1y0 respectively.

The ith partial product PPi (corresponding to yi) is given by PPi = (X)(yi) and its jth bit is
equal to (xj)(yi). The result of multiplying those two bits is

xi yi (xi)(yi)
0 0 0
0 1 0
1 0 0
1 1 1

which is equivalent to the operation of an AND gate. Hence, to generate the required PP , we
use a row of two inputs AND gates where one of the inputs in all the gates is driven by yi while
the other input in each gate receives the corresponding bit of X. Exercise 5.2

Exercise 5.3. Yes. Algorithm 5.2 is still a loop and the loop condition must be checked. In
this case, we initialize a register with the value of n, decrement it every cycle, and compare with
zero to check the end of the loop. Fig. 5.1 is not a complete implementation. A designer must
remember any hidden costs not explicitly presented in some diagrams when evaluating a new
design.

Another “hidden” cost is the use of a shift register instead of a regular register with only a
parallel loading capability. Such a shift register is slightly more complicated than the registers
needed in algorithm 5.1.

Exercise 5.3

Exercise 5.4. In the two implementations, each cycle both the adder and the multilpexer are
used and consume practically the same power. This power is wasted. A probably better way to
reduce the power in the case of Fig. 5.2 is to really skip over the zeros by turning off the power
supply to the adder. In such a case, extra power is consumed only when there is a 1 in the LSB
of Y .

Exercise 5.4

Exercise 5.5. The regular cycles have a delay time equal to that of the sequence of the adder
and the multiplexer while the faster cycles have the delay of the multiplexer only. Those fast
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cycles occur when there is a bit with a zero value in Y . The question is then how many bits, on
average, are of zero value? This depends on the kind of data input to the multiplier. A designer
should analyze the anticipated data and find the probability p0 of a bit being zero. Then, if the
time taken by the multiplexer is log4 n and that by the adder is logr n, the total time delay is

t = O (n× (p0 log4 n+ (1− p0)(logr(n) + log4 n))) .

A study of the anticipated workload of a computing system is often useful for a designer to tune
the design for the best performance.

Exercise 5.5

Exercise 5.6. sol

Exercise 5.6
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